首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of an investigation of the UV radiation from the plasma of a dc glow discharge in mixtures of inert gases with bromine and iodine molecules are presented. The current-voltage and spectral characteristics of a longitudinal glow discharge with a power of 10–250 W are studied. The power and the efficiency of the total UV radiation of the plasma, as well as the power of radiation at the spectral line of the iodine atom at 206.2 nm, are optimized as functions of the power deposited into the plasma and the composition of the gas mixture. In active media based on Kr-Br2 mixtures, the molecular emission of the plasma was represented by bands at 207 (KrBr(B-X)) and 289 nm (Br 2 * ), while, in He-Xe-I2 mixtures, it was represented by bands at 253 (XeI(B-X)) and 342 nm (I2).  相似文献   

2.
The output characteristics and parameters of the plasma of a powerful gas-discharge source of UV radiation are studied. The UV source uses He-I2 and Xe-I2 mixtures and is excited by a longitudinal glow discharge. The pressure of the gas mixtures is varied from 100 to 1500 Pa, and the discharge power falls into the range 15–250 W. The source (lamp) emits in the spectral interval 200–390 nm, which covers the spectral line of the iodine atom at 206.2 nm, the spectral band of XeI(B-X) with a maximum at 253 nm, and the spectral band of with a maximum at 342 nm. For He(Xe)-I2 mixtures at a pressure of 800–1000 Pa (this pressure range is near-optimal according to our experimental data), the electron energy distribution functions and the electron kinetic coefficients as functions of parameter E/N (E is the electric field strength, and N is the particle concentration in the discharge) are calculated. The calculated plasma parameters are used in the qualitative analysis of key electronic processes in the plasma of an exciplex halogen UV source and will be subsequently employed in numerical simulation of the process kinetics and output characteristics of a UV source based on helium-iodine or xenon-iodine mixtures.  相似文献   

3.
The results of studying the radiation due to argon, krypton, and xenon monochloride bands, as well as to the bands of chlorine molecules, from the plasma of a transverse Ar-Kr-Xe-Cl2 volume discharge are reported. The working mixture of a pulse radiation source is optimized with regard to its pressure and elemental composition and parameters of an excitation system. By numerically solving the Boltzmann kinetic equation for the electron energy distribution function, the transport characteristics of plasma electrons and discharge power specific losses are found for different values of the reduced electric field strength. The plasma parameters are simulated for the quaternary mixture, which is most appropriate for a multiwave UV-VUV source. Qualitative analysis is conducted for the most important electron processes in the multicomponent plasma that govern the joint formation of argon, krypton, and xenon monochlorides in the transverse discharge.  相似文献   

4.
The spectral characteristics of radiation from atmospheric-pressure gas-discharge plasma in mixtures of cadmium dibromide vapor with gases (Ne, Ar, Kr, Xe, and N2), as well as the temporal characteristics of the voltage and current, have been investigated. A barrier discharge at the repetition frequency of sine voltage pulses up to 140 kHz has been used to create the gas-discharge plasma and excite the components of the working mixture. The discharge radiation has been analyzed in the spectral range 200–900 nm with a high resolution (0.05 nm). In the spectra, we have revealed radiation from exciplex molecules CdBr(B → X) and CdBr(C → X), atomic lines of cadmium and inert gases, and, in mixtures with xenon, radiation of exciplex molecules XeBr(B → X, B → A). The XeBr(B → X) radiation prevailed in the spectra at mixture temperatures up to 200°C. The further increase of the temperature resulted in the prevalence of the CdBr(B → X) radiation. The most intense CdBr(B → X) radiation was observed in mixtures of CdBr2/Xe. When the temperature of the mixture was higher than 250°C, the discharge radiation had a silvery-white color. Regularities in the spectral characteristics of the radiation from the gas-discharge plasma are discussed. The high-frequency atmospheric-pressure barrier discharge in mixtures of cadmium dibromide with gases, excited by sine voltage pulses, can be used in multiwave and broadband excilamps, operating in the UV and visible regions.  相似文献   

5.
The results of a systematic investigation of the emission characteristics of a low-pressure UV excimer-halogen lamp pumped by a longitudinal dc glow discharge are presented. The discharge was initiated in mixtures of heavy inert gases with iodine vapor at a total pressure of 100–2000 Pa and a power deposited into the plasma of 10–100 W. Current-voltage characteristics of the glow discharge and emission spectra of the plasma in the region of 190–360 nm are studied. The radiation intensity at the resonance line of the iodine atom (206.2 nm) and the intensity at the peaks of the XeI(B-X) (253 nm) and I2(B-X) (342 nm) emission bands are analyzed as functions of the pressure and partial composition of the mixtures of Ar, Kr, and Xe with iodine vapor, as well as the electric power of the glow discharge. The most efficient gas mixtures are determined for an electric-discharge UV iodine vapor lamp with continuous-wave emission and a long service life before a change of the mixture is required.  相似文献   

6.
The emission from the plasma of a contracted longitudinal dc discharge in a He/CF2Cl2 mixture in the wavelength range 130–300 nm is investigated. It is shown that the discharge plasma emits within the range 150–260 nm. The emission consists mainly of the broad bands of Cl2 molecules and single-charged chlorine ions. The pressure and composition of the working mixtures, the discharge current, and the time during which the emitter can operate on a single gas fill are optimized to attain the best characteristics of UV and VUV radiation. The results obtained are of interest for developing a steady-state source of VUV and UV radiation to be applied in microelectronics, photochemistry, and medicine.  相似文献   

7.
A model has been constructed to describe the electrical characteristics of the central bulk plasma region in a 13.56-MHz parallel-plate discharge in chlorine at pressures of about 1 torr. This region is modeled as a volume-controlled plasma with the electron balance dominated by single-step electron-impact ionization and attachment and with the electron energy distribution function in equilibrium with the local instantaneous electric field. Relationships between the ionization frequency, the attachment frequency, the electron drift velocity, and the electric field are provided by solutions of the Boltzmann equation for mixtures of Cl2 and Cl which result from Cl2 dissociation. From a measured current waveform and Cl2/Cl density ratio, the model generates the local electric-field waveform, the time-varying electron density, and the power density in the central portion of the bulk plasma. The calculated time-averaged power input per unit discharge length compares well with experimentally determined values.  相似文献   

8.
The results of analysis of the spectral characteristics of short-wave radiation sources operating on transitions in argon, krypton, and xenon monohalogenides, as well as chlorine molecules, excited by a longitudinal low-pressure glow discharge are considered. Radiation emitted by ArCl*, KrCl*, XeCl*, Cl 2 ** , and Cl 2 * molecules in a spectral range of 170–350 nm is optimized using complex working mixtures of Ar-Kr-(Xe)-Cl2 in the lamps. The average radiation power of the lamps ranges from 1 to 10 W for an efficiency of ≤25%. Optimization of wide-band lamps on transitions in chlorine molecules and the decay products of Freon-12 molecules (CF2Cl2) is carried out on mixtures of helium with chlorine and Freon-12 molecules. This makes it possible to develop lamps emitting in a spectral range of 140–270 nm and containing no costly inert gases (Xe or Kr) in their working mixtures. Exciplex halogen lamps with a wide-band emission spectrum in the VUV-UV range can be used in spectrometers as radiation sources in experiments with absorption and in high-energy chemistry, ecology, and medicine.  相似文献   

9.
Radiation of a nanosecond barrier discharge in a mixture of krypton, argon, and carbon-tetrachloride vapor is studied in the spectral range of 150–300 nm. The plasma radiation spectra and the dependences of the intensities of the 258 nm Cl2(D′ → A′), 222 nm KrCl(BX), and 175 nm ArCl(BX) bands on the partial pressure of liquid freon vapor, argon, and krypton, as well as on the discharge excitation conditions, are studied. The optimal compositions of gas mixtures for creating a broadband UV-VUV emitter based on the band system of argon chloride, krypton chloride, and chlorine molecule are determined.  相似文献   

10.
Measurements of dust plasma parameters were carried out in the discharges of (SiH4/C2H4/Ar) mixtures. Dust particles were formed in the capacitively coupled radio-frequency discharge of these reactive mixtures in a cylindrical chamber. Langmuir probe was employed for diagnosing and measuring the important plasma parameters such as electron density and electron temperature. The results showed that the electron density dropped, and in contrast the electron temperature rose when the dust particles formed. The curves of the electron density and temperature versus the RF power and pressure were presented and analysed. Further, it was found that the wriations of electron temperature and the size of dust void with the RF power followed the similar trends. These trends might be useful for understanding more about the characteristics of dusty voids.  相似文献   

11.
An investigation was made of the characteristics of the formation of a selfcontroled volume discharge for the pumping of CO2 lasers, i.e. self-sustained volume discharge (SSVD), which involved a preliminary filling of a discharge gap by an electron flux from an auxiliary-discharge plasma. We have found that this method was suitable for large interelectrode gaps, that distortion of the electric field in the gap by the space charge of the electron flux played an important role in the formation of the discharge and that the electrodes could be profiled dynamically during propagation of an electron flux through the discharge gap and a SSVD could form in systems with a strongly inhomogeneous field. High power SSVD based CO2 laser systems have been created and investigated. Another type of self-controled volume discharge without pre-ionization, i.e. a selfinitiated volume discharge (SIVD), in nonchain HF lasers with SF6−C2H6 mixtures was investigated as well in our review. We have established that, after the primary local electrical breakdown of the discharge gap, the SIVD spreads along the gap in directions perpendicular to that of the electric field by means of the successive formation of overlapping diffuse channels under a discharge voltage close to its quasi-steady state value. It is shown that, as new channels appear, the current flowing through the channels formed earlier decreases. The volume occupied by the SIVD increases with increase in the energy deposited in the plasma and, when the discharge volume is confined by a dielectric surface, the discharge voltage increases simultaneously with increase in the current. The possible mechanisms which explain the observed phenomena, namely the dissociation of SF6 molecules and electron attachment SF6 molecules, are examined. A simple analytical model, which makes it possible to describe these mechanisms at a qualitative level, was developed. High power SIVD based HF(DF) lasers have been developed and tested.  相似文献   

12.
The optical characteristics of a UV broadband lamp that was excited by a longitudinal glow discharge and operated on Kr—Br2—I2, Xe—Br2—I2, and Kr—Xe—Br2—I2 mixtures are investigated. The interelectrode spacing in the lamp is 10 cm, the inner diameter of a discharge tube being 14 mm. The current-voltage characteristics, the emission spectra of the plasma, and the dependence of the intensity of spectral lines (the amplitude of radiation bands) on the power that was pumped into the plasma based on mixtures of various compositions and pressures, as well as the radiation power in the spectral range from 200 to 390 nm, are studied. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 6, pp. 840–842, November–December, 2005.  相似文献   

13.
An experimental installation with a laser plasmatron based on a continuous wave CO2 laser with a radiation power of up to 3.5 kW has been created. The plasmatron design makes it possible to bring out the plasma jet into atmospheric air both along and across the laser beam direction. The spatial temperature distributions on the metal substrate surface heated by the plasma jet are measured. The threshold power for optical discharge maintenance as a function of the gas flow rate and the focal length of the focusing lens are obtained for an Ar and Ar/CH4/H2 gas mixture under atmospheric pressure; the radiation spectrum of the discharge plasma is measured. A one-dimensional model of the discharge for estimation of its geometrical parameters in a convergent laser beam with consideration of radiation refraction on the discharge is given.  相似文献   

14.
In this paper the results of studying of the electron temperature of buffer and complex plasmas in mixtures of noble gases (helium + argon) in capacitively coupled radiofrequency (CCRF) discharge are presented. The optical properties of dusty plasma in argon, helium and their mixtures have been studied using optical diagnostic methods. Based on spectral lines of plasma forming gases, the dependence of the electron temperature on gas pressure and discharge power has been determined. The axial distribution of electron temperature in the interelectrode gap has been measured. Measurements have been made using an RF compensated electric probe. The comparison of the experimental results shows that admixture of a small amount of argon to helium leads to a decrease in the electron temperature of buffer plasma. The presence of dust particles in the plasma causes an increase in the electron temperature. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The apparatus for measurements of probe characteristic and its second derivative during plasma assisted thin film deposition is described. To avoid the probe surface contamination an impulse method combined with ion bombardment of the probe surface was used. Experimental evidence of the effectiveness of this method in the discharge fed with Ar/C2F3Cl mixtures is given. Measurements of the second derivative of the probe current have indicated an electron distribution different from the Maxwellian. Negative ions have been found in the discharge, the concentration of which has been estimated to be at most by one order of magnitude higher than the electron density.  相似文献   

16.
Emission characteristics of a high-frequency transverse discharge plasma in mixtures of argon and xenon with chlorine molecules are presented. It is shown that the discharge in xenon-chlorine mixtures is a source of broadband radiation in the spectral region 220–450 nm, while in argon-chlorine mixtures, it emits in the region 150–270 nm. Double mixtures with a partial pressure of inert gases ranging within 300–400 Pa and a chlorine partial pressure of 30-40 Pa are found to be optimal. The mean output discharge power ranges within 15–50 W.  相似文献   

17.
We present the results of an investigation of a short-wavelength radiation source (Δλ = 130–350 nm) with excitation by a transverse high-frequency (f = 1.76 MHz) discharge based on a mixture of argon and chlorine (p = 100–500 Pa). We have studied the spectral characteristics of the plasma, the oscilloscope traces of the voltage, the current and emission of the discharge, the dependence of the power of the emission on the electrical power of the discharge, and also the pressure and partial composition of the Ar/Cl2 mixture. The UV-VUV source emits in a system of broadened and overlapping ArCl(B/X), Cl2(D′/A′), and Cl**2 molecular bands. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 5, pp. 648–651, September–October, 2007.  相似文献   

18.
In the present work the deposition of titanium layers using a planar-magnetron sputtering system is performed. To optimize the sputtering process and to improve the layer quality the plasma has been monitored in front of the target and near the substrate. The plasma was studied by means of Langmuir-probe diagnostics and optical emission spectroscopy (OES). The internal plasma parameters (ne, kB Te) and the relative power dependence of the neutral densities (nTi) at the target as well as at the substrate have been determined as functions of discharge power and pressure. It was found that the plasma densities increase with power and pressure and reach a maximum at a certain gas pressure (0.8 Pa) connected with a maximum of the energy influx and a maximum of the mass density of the deposited films.  相似文献   

19.
A new magnetic discharge stabilization technique for coaxial laser systems is described. The approach utilizes crosses electric and magnetic fields to create and maintain a large and rapidly rotating plasma volume which does not experience glow-to-arc transitions. Very high cw specific discharge power loadings have been achieved even without the benefit of external gas cooling or circulation.Performance is insensitive to gas composition and pressure such that high power coaxial discharges have been run in CO2 laser gas mixtures up to several hundred torr. Stable cw discharges have also been obtained in mixtures containing several torr of SF6.The technique appears to be readily scalable to give very large excited volumes in systems with comparatively small overall physical dimensions.  相似文献   

20.
We have experimentally studied the UV radiation of a low-temperature barrier discharge plasma in an Ar-H2O mixture. The spectral interval 300–400 nm has been examined in detail. Addition of argon with a pressure of 24 kPa to a barrier discharge in water vapor at a pressure of ~0.1 kPa leads to a ninefold increase in the UV radiation power of excited hydroxyl molecules. An increase in the duration of the UV radiation pulse of the mixture in the longitudinal discharge decay has been achieved for the first time, which may be direct evidence of energy transfer from metastable argon atoms to water molecules. An estimate of the upper boundary of the dissociative excitation rate constant of hydroxyl molecules OH*(A 2Σ+) upon interaction of metastable argon atoms with water molecules has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号