首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the acid cleavage at 25 degrees C in 20% v/v aqueous ethanol of a series of analogues of piperidine dithiocarbamate X(C2H4)2NCS2(-) (X = CH2, CHCH3, NH, NCH3, S, O) was studied. The pH-rate profiles were obtained in the range of H(o)-5 and pH 5. They all presented a dumbell shaped curve with a plateau from which the pH-independent first-order rate constant k(o) (or the specific acid catalysis k(H)) was calculated, in addition to the acid dissociation constant of the free (pKa) and conjugate acid (pK(+)) species of the DTC. LFERs of the kinetically determined pKa and pK(+) versus pKN (pKa of parent amine) were used to characterize the reactive species and the structure of the transition state of the rate-determining step. For X = CH2, CH3CH the values of k(H) agree with those of alkDTCs in the strong base region of the Br?nsted plot of log k(H) versus pKN where the transition state is close to a zwitterion formed by intramolecular water-catalyzed S-to-N proton transfer of the dithiocarbamic acid. However, when X = NH, CH 3N, O, S, the reactive species is the DTC anion, which is as reactive as an arylDTC, and similarly, the pK(+) values correspond to a parent amine that is about 3-4 pK units more basic. The solvent isotope effect indicated that the acid decomposition of these dithiocarbamate anions is specifically catalyzed by a Hydron anchimerically assisted by the heteroatom through a boat conformation.  相似文献   

2.
Dissociative photoionization mass spectrometry has been used to measure appearance energies for the 1-hydroxyethyl cation (CH(3)CH=OH(+)) formed from ethanol and 2-propanol. Molecular orbital calculations for these two unimolecular fragmentation reactions suggest that only methyl loss from ionized 2-propanol does not involve excess energy at the threshold. The experimental appearance energy of 10.31 +/- 0.01 eV for this latter process results in a 298 K heat of formation of 593.1 +/- 1.2 kJ mol(-1) for CH(3)CH=OH(+) and a corresponding absolute proton affinity for acetaldehyde of 770.9 +/- 1.3 kJ mol(-1). This value is supported by both high-level ab initio calculations and a proposed upward revision of the absolute isobutene proton affinity to 803.3 +/- 0.9 kJ mol(-1). A 298 K heat of formation of 52.2 +/- 1.9 kJ mol(-1) is derived for the tert-butyl radical.  相似文献   

3.
The unimolecular dissociation reactions of the methylhydrazine (MH) and tetramethylhydrazine (TMH) radical cations have been investigated using tandem mass spectrometry and threshold photoelectron photoion coincidence spectroscopy in the photon energy ranges 9.60-31.95 eV (for the MH ion) and 7.74-29.94 eV (for the TMH ion). Methylhydrazine ions (CH3NHNH2(+*)) have three low-energy dissociation channels: hydrogen atom loss to form CH2NHNH2(+) (m/z 45), loss of a methyl radical to form NHNH2(+) (m/z 31), and loss of methane to form the fragment ion m/z 30, N2H2(+*). Tetramethylhydrazine ions only exhibit two dissociation reactions near threshold: that of methyl radical loss to form (CH3)2NNCH3(+) (m/z 73) and of methane loss to form the fragment ion m/z 72 with the empirical formula C3H8N2(+*). The experimental breakdown curves were modeled with Rice-Ramsperger-Kassel-Marcus theory, and it was found that, particularly for methyl radical loss, variational transition state theory was needed to obtain satisfactory fits to the data. The 0 K enthalpies of formation (delta(f)H0) for all fragment ions (m/z 73, m/z 72, m/z 45, m/z 31, and m/z 30) have been determined from the 0 K activation energies (E0) obtained from the fitting procedure: delta(f)H0[(CH3)2NNCH3(+)] = 833 +/- 5 kJ mol(-1), delta(f)H0 [C3H8N2(+*)] = 1064 +/- 5 kJ mol(-1), delta(f)H0[CH2NHNH2(+)] = 862 +/- 5 kJ mol(-1), delta(f)H0[NHNH2(+)] = 959 +/- 5 kJ mol(-1), and delta(f)H0[N2H2(+*)] = 1155 +/- 5 kJ mol(-1). The breakdown curves have been measured from threshold up to h nu approximately 32 eV for both hydrazine ions. As the photon energy increases, other dissociation products are observed and their appearance energies are reported.  相似文献   

4.
In order to better understand the volatilization process for ionic liquids, the vapor evolved from heating the ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIM(+)Br(-)) was analyzed via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and thermogravimetric analysis mass spectrometry (TGA-MS). For this ionic liquid, the experimental results indicate that vaporization takes place via the evolution of alkyl bromides and alkylimidazoles, presumably through alkyl abstraction via an S(N)2 type mechanism, and that vaporization of intact ion pairs or the formation of carbenes is negligible. Activation enthalpies for the formation of the methyl and ethyl bromides were evaluated experimentally, ΔH(?)(CH(3)Br) = 116.1 ± 6.6 kJ/mol and ΔH(?)(CH(3)CH(2)Br) = 122.9 ± 7.2 kJ/mol, and the results are found to be in agreement with calculated values for the S(N)2 reactions. Comparisons of product photoionization efficiency (PIE) curves with literature data are in good agreement, and ab initio thermodynamics calculations are presented as further evidence for the proposed thermal decomposition mechanism. Estimates for the enthalpy of vaporization of EMIM(+)Br(-) and, by comparison, 1-butyl-3-methylimidazolium bromide (BMIM(+)Br(-)) from molecular dynamics calculations and their gas phase enthalpies of formation obtained by G4 calculations yield estimates for the ionic liquids' enthalpies of formation in the liquid phase: ΔH(vap)(298 K) (EMIM(+)Br(-)) = 168 ± 20 kJ/mol, ΔH(f,?gas)(298 K) (EMIM(+)Br(-)) = 38.4 ± 10 kJ/mol, ΔH(f,?liq)(298 K) (EMIM(+)Br(-)) = -130 ± 22 kJ/mol, ΔH(f,?gas)(298 K) (BMIM(+)Br(-)) = -5.6 ± 10 kJ/mol, and ΔH(f,?liq)(298 K) (BMIM(+)Br(-)) = -180 ± 20 kJ/mol.  相似文献   

5.
The pH titration studies (pH 6.7-12.1) in a series of dimeric, trimeric, tetrameric, pentameric, and hexameric oligo-RNA molecules [GpA (2a), GpC (3a), GpApC (5), GpA(1)pA(2)pC (6), GpA(1)pA(2)pA(3)pC (7), GpA(1)pA(2)pA(3)pA(4)pC (8)] have shown that the pK(a) of N(1)-H of 9-guaninyl could be measured not only from its own deltaH8G, but also from the aromatic marker protons of other constituent nucleobases. The relative chemical shift differences [Deltadelta((N)(-)(D))] between the protons in various nucleotide residues in the oligo-RNAs at the neutral (N) and deprotonated (D) states of the guanine moiety show that the generation of the 5'-(9-guanylate ion) in oligo-RNAs 2-8 reduces the stability of the stacked helical RNA conformation owing to the destabilizing anion(G(-))-pi/dipole(Im(delta)(-)) interaction. This destabilizing effect in the deprotonated RNA is, however, opposed by the electrostatically attractive atom-pisigma (major) as well as the anion(G(-))-pi/dipole(Py(delta)(+)) (minor) interactions. Our studies have demonstrated that the electrostatically repulsive anion(G(-))-pi/dipole(Im(delta)(-)) interaction propagates from the first to the third nucleobase quite strongly in the oligo-RNAs 6-8, causing destacking of the helix, and then its effect is gradually reduced, although it is clearly NMR detectable along the RNA chain. Thus, such specific generation of a charge at a single nucleobase moiety allows us to explore the relative strength of stacking within a single-stranded helix. The pK(a) of 5'-Gp residue from its own deltaH8G in the hexameric RNA 8 is found to be 9.76 +/- 0.01; it, however, varies from 9.65 +/- 0.01 to 10.5 +/- 0.07 along the RNA chain as measured from the other marker protons (H2, H8, H5, and H6) of 9-adeninyl and 1-cytosinyl residues. This nucleobase-dependent modulation of pK(a)s (DeltapK(a) +/- 0.9) of 9-guaninyl obtained from other nucleobases in the hexameric RNA 8 represents a difference of ca. 5.1 kJ mol(-)(1), which has been attributed to the variable strength of electrostatic interactions between the electron densities of the involved atoms in the offset stacked nucleobases as well as with that of the phosphates. The chemical implication of this variable pK(a) for guanin-9-yl deprotonation as obtained from all other marker protons of each nucleotide residue within a ssRNA molecule is that it enables us to experimentally understand the variation of the electronic microenvironment around each constituent nucleobase along the RNA chain in a stepwise manner with very high accuracy without having to make any assumption. This means that the pseudoaromaticity of neighboring 9-adeninyl and next-neighbor nucleobases within a polyanionic sugar-phosphate backbone of a ssRNA can vary from one case to another due to cross-modulation of an electronically coupled pi system by a neighboring nucleobase. This modulation may depend on the sequence context, spatial proximity of the negatively charged phosphates, as well as whether the offset stacking is ON or OFF. The net outcome of this electrostatic interaction between the neighbors is creation of new sequence-dependent hybrid nucleobases in an oligo- or polynucleotide whose properties are unlike the monomeric counterpart, which may have considerable biological implications.  相似文献   

6.
Protonated acetamide exists as two planar conformers, the more stable anti-form (anti-1(+)) and the syn-form (syn-1(+)), DeltaG(degree) (298) (anti-->syn) = 10.8 kJ mol(-1). Collisional neutralization of 1(+) produces 1-hydroxy-1-amino-1-ethyl radicals (anti-1 and syn-1) which in part survive for 3.7 micros. The major dissociation of 1 is loss of the hydroxyl hydrogen atom (approximately 95%) which is accompanied by loss of one of the methyl hydrogen atoms (approximately 3%) and loss of the methyl group (approximately 2%). The most favorable dissociation of the OH bond is calculated to be only 34 kJ mol(1) endothermic but requires 88 kJ mol(-1) in the transition state. Other dissociations of 1, e.g., loss of one of the amide hydrogens, methyl hydrogens, and loss of ammonia are calculated to proceed through higher- energy transition states and are not kinetically competitive if proceeding from the ground doublet electronic state of 1. The unimolecular dissociation of 1 following collisional electron transfer is promoted by large Franck-Condon effects that result in 8090 kJ mol(-1) vibrational excitation in the radicals. Radicals 1 are calculated to exoergically abstract hydrogen atoms from acetamide in water, but not in the gas phase. The different reactivity is due to solvent effects that favor the products, (.)CH(2)CONH(2) and CH(3)CH(OH)NH(2), over the reactants.  相似文献   

7.
As part of a search for systems that exhibit intramolecular aromatic edge-to-face interactions, a series of four biaryl compounds containing a phenethyl side chain were prepared. These compounds exist as a slowly interconverting mixture of two atropisomers due to steric hindrance to rotation about the biaryl bond. The more thermodynamically stable isomer exhibits an abnormal shielding of an ortho-proton in solution indicative of an edge-to-face CH-pi interaction with the terminal phenyl ring on the side chain. This tilted-T type of geometry was observed in the X-ray crystal structure of one of the compounds. The edge-to-face conformation in solution is estimated by variable temperature NMR studies to be energetically favored by ca. 1.6 kcal mol(-1) but entropically disfavored by ca. 5.0 cal K(-1) mol(-1).  相似文献   

8.
We have investigated the orientation dependence of the cation-pi interaction between a phenyl ring and a pyridinium ring in the context of a flexible model system in water. Of the four possible positions of the pyridinium nitrogen, ipso, ortho, meta, and para, we found a variation in the interaction energy of about 0.75 kcal mol(-1), with the stacking of the ipso-pyridinium ring providing the strongest interaction. The observed stability is attributed to the maximization of the electrostatic interaction, minimization of rotamers, and possible differences in hydration phenomena arising from alkylation.  相似文献   

9.
We conducted the crossed molecular beams reactions of the phenyl and D5-phenyl radicals with propylene together with its partially deuterated reactants at collision energies of ~45 kJ mol(-1) under single collision conditions. The scattering dynamics were found to be indirect and were mainly dictated by an addition of the phenyl radical to the sterically accessible CH(2) unit of the propylene reactant. The resulting doublet radical isomerized to multiple C(9)H(11) intermediates, which were found to be long-lived, decomposing in competing methyl group loss and atomic hydrogen loss pathways with the methyl group loss leading to styrene (C(6)H(5)C(2)H(3)) and the atomic hydrogen loss forming C(9)H(10) isomers cis/trans 1-phenylpropene (CH(3)CHCHC(6)H(5)) and 3-phenylpropene (C(6)H(5)CH(2)C(2)H(3)). Fractions of the methyl versus hydrogen loss channels of 68 ± 16% : 32 ± 10% were derived experimentally, which agrees nicely with RRKM theory. As the collision energy rises to 200 kJmol(-1), the contribution of the methyl loss channel decreases sharply to typically 25%; the decreased importance of the methyl group loss channel was also demonstrated in previous crossed beam experiments conducted at elevated collision energies of 130-193 kJ mol(-1). The presented work highlights the interesting differences of the branching ratios with rising collision energies in the reaction dynamics of phenyl radicals with unsaturated hydrocarbons related to combustion processes. The facility of forming styrene, a common molecule found in combustion against the elusiveness of forming the cyclic indane molecule demonstrates the need to continue to explore the potential surfaces through the combinative single collision experiment and electronic structure calculations.  相似文献   

10.
The valence shell photoelectron spectrum, threshold photoelectron spectrum, and threshold photoelectron photoion coincidence (TPEPICO) mass spectra of acetone have been measured using synchrotron radiation. New vibrational progressions have been observed and assigned in the X 2B2 state photoelectron bands of acetone-h6 and acetone-d6, and the influence of resonant autoionization on the threshold electron yield has been investigated. The dissociation thresholds for fragment ions up to 31 eV have been measured and compared to previous values. In addition, kinetic modeling of the threshold region for CH3* and CH4 loss leads to new values of 78 +/- 2 kJ mol(-1) and 75 +/- 2 kJ mol(-1), respectively, for the 0 K activation energies for these two processes. The result for the methyl loss channel is in reasonable agreement with, but slightly lower than, that of 83 +/- 1 kJ mol(-1) derived in a recent TPEPICO study by Fogleman et al. The modeling accounts for both low-energy dissociation channels at two different ion residence times in the mass spectrometer. Moreover, the effects of the ro-vibrational population distribution, the electron transmission efficiency, and the monochromator band-pass are included. The present activation energies yield a Delta(f)H298 for CH3CO+ of 655 +/- 3 kJ mol(-1), which is 4 kJ mol(-1) lower than that reported by Fogleman et al. The present Delta(f)H298 for CH3CO+ can be combined with the Delta(f)H298 for CH2CO (-47.5 +/- 1.6 kJ mol(-1)) and H+ (1530 kJ mol(-1)) to yield a 298 K proton affinity for ketene of 828 +/- 4 kJ mol(-1), in good agreement with the value (825 kJ mol(-1)) calculated at the G2 level of theory. The measured activation energy for CH4 loss leads to a Delta(f)H298 (CH2CO+*) of 873 +/- 3 kJ mol(-1).  相似文献   

11.
The isopropyl chloro complex Tp(Me2)NbCl(i-Pr)(PhC&tbd1;CMe) (2) [Tp(Me2) = hydrotris(3,5-dimethylpyrazolyl)borate] exhibits a beta-agostic structure in the crystal. The conformation of the alkyl group is such that the agostic methyl group lies in the Calpha-Nb-Cl plane and the nonagostic one, in a wedge formed by two pyrazole rings. As observed by solution NMR spectroscopy, restricted rotation about the Nb-C bond allows the observation of an equilibrium between this species, 2beta, and a minor alpha-agostic rotamer 2alpha. A putative third rotamer which would have the secondary hydrogen in the wedge is not observed. Similar behavior is observed for related Tp'NbCl(i-Pr)(R(2)C=CMe) [Tp' = Tp(Me2), R(2) = Me (3); Tp' = Tp(Me2,4Cl), R(2) = Ph (4)]. The two diastereomers of the sec-butyl complex Tp(Me2)NbCl(sec-Bu)(MeC=CMe) (5) have been separated. In the crystal, 5CR-AS has a beta-agostic methyl group with the ethyl group located in the wedge formed by two pyrazole rings. The same single beta-agostic species is observed in solution. The other diastereomer, 5AR-CS has a beta-agostic methylene group in the solid state, and the methyl group sits in the wedge. In solution, an equilibrium between this beta-agostic methylene complex 5AR-CSbeta and a minor alpha-agostic species 5AR-CSalpha, where the ethyl substituent of the sec-Bu group is located in the wedge between two pyrazole rings, is observed. NMR techniques have provided thermodynamic parameters for these equilibria (K = 2beta/2alpha = 4.0 +/- 0.1 at 193 K, DeltaG(o)(193) = -2.2 +/- 0.1, DeltaH(o) = -7.4 +/- 0.1 kJ mol(-)(1), and DeltaS(o) = -27 +/- 1 J K(-)(1) mol(-)(1)), as well as kinetic parameters for the rotation about the Nb-C bond (at 193 K, DeltaG(2)= 47.5 +/- 2.5, DeltaH= 58.8 +/- 2.5 kJ mol(-)(1), and DeltaS = 59.0 +/- 10 J K(-)(1) mol(-)(1)). Upon selective deuteration of the beta-methyl protons in Tp(Me2)NbCl[CH(CD(3))(2)](PhC=CMe) (2-d(6)), an expected isotope effect that displaces the equilibrium toward the alpha-agostic rotamer is observed (K = 2-d(6)beta/2-d(6)alpha = 3.1 +/- 0.1 at 193 K, DeltaG(o)(193) = -1.8 +/- 0.1, DeltaH(o) = -8.3 +/- 0.4 kJ mol(-)(1) and DeltaS(o)= -34 +/- 2 J K(-)(1) mol(-)(1)). The anomalous values for DeltaH(o) and DeltaS(o) are discussed. Hybrid quantum mechanics/molecular mechanics calculations (IMOMM (B3LYP:MM3)) on the realistic model Tp(Me2)NbCl(i-Pr)(HC=CMe) have reproduced the energy differences between the alpha- and beta-agostic species with remarkable accuracy. Similar calculations show that Tp(Me2)NbCl(CH(2)Me)(HC=CMe) is alpha-agostic only and that Tp(5)(-)(Me)NbCl(CH(2)Me)(HC=CMe), which has no methyl groups at the 3-positions of the pyrazole rings, is beta-agostic only. Analysis and discussion of the computational and experimental data indicate that the unique behavior observed for the secondary alkyl complexes stems from competition between electronic effects favoring a beta-agostic structure and steric effects directing a bulky substituent in the wedge between two pyrazole rings of Tp(Me2). All of the secondary alkyl complexes thermally rearrange to the corresponding linear alkyl complexes via a first-order reaction.  相似文献   

12.
The dissociative photoionization of energy selected methanol isotopologue (CH(3)OH, CD(3)OH, CH(3)OD and CD(3)OD) cations was investigated using imaging Photoelectron Photoion Coincidence (iPEPICO) spectroscopy. The first dissociation is an H/D-atom loss from the carbon, also confirmed by partial deuteration. Somewhat above 12 eV, a parallel H(2)-loss channel weakly asserts itself. At photon energies above 15 eV, in a consecutive hydrogen molecule loss to the first H-atom loss, the formation of CHO(+)/CDO(+) dominates as opposed to COH(+)/COD(+) formation. We see little evidence for H-atom scrambling in these processes. In the photon energy range corresponding to the B[combining tilde] and C[combining tilde] ion states, a hydroxyl radical loss appears yielding CH(3)(+)/CD(3)(+). Based on the branching ratios, statistical considerations and ab initio calculations, this process is confirmed to take place on the first electronically excited ?(2)A' ion state. Uncharacteristically, internal conversion is outcompeted by unimolecular dissociation due to the apparently weak Renner-Teller-like coupling between the X[combining tilde] and the ? ion states. The experimental 0 K appearance energies of the ions CH(2)OH(+), CD(2)OH(+), CH(2)OD(+) and CD(2)OD(+) are measured to be 11.646 ± 0.003 eV, 11.739 ± 0.003 eV, 11.642 ± 0.003 eV and 11.737 ± 0.003 eV, respectively. The E(0)(CH(2)OH(+)) = 11.6454 ± 0.0017 eV was obtained based on the independently measured isotopologue results and calculated zero point effects. The 0 K heat of formation of CH(2)OH(+), protonated formaldehyde, was determined to be 717.7 ± 0.7 kJ mol(-1). This yields a 0 K heat of formation of CH(2)OH of -11.1 ± 0.9 kJ mol(-1) and an experimental 298 K proton affinity of formaldehyde of 711.6 ± 0.8 kJ mol(-1). The reverse barrier to homonuclear H(2)-loss from CH(3)OH(+) is determined to be 36 kJ mol(-1), whereas for heteronuclear H(2)-loss from CH(2)OH(+) it is found to be 210 kJ mol(-1).  相似文献   

13.
空间质子与电子综合辐照作用下甲基硅橡胶破坏模型   总被引:2,自引:0,他引:2  
张丽新  徐洲  何世禹 《化学学报》2004,62(7):725-728
利用空间辐照环境模拟设备对甲基硅橡胶进行了质子、电子综合辐照试验.质子、电子的辐照能量均为150 keV,辐照剂量均为1016 cm-2.质谱测试发现,综合辐照过程中有CH3Si(O)CH3气体生成.量子化学计算表明,H+直接进攻硅橡胶高分子链中的氧而导致高分子链断裂的过程要放热655.34 kJ/mol,是唯一的放热反应通道.这一过程不会形成稳定的过渡态和中间体,而是直接形成断键产物.计算分析结果与综合辐照形成的气体产物CH3Si(O)CH3相吻合.  相似文献   

14.
The standard molar enthalpies of formation of chloro-, bromo-, and iodoacetic acids in the crystalline state, at 298.15 K, were determined as deltafH(o)m(C2H3O2Cl, cr alpha)=-(509.74+/- 0.49) kJ x mol(-1), deltafH(o)m(C2H3O2Br, cr I)-(466.98 +/- 1.08) kJ x mol(-1), and deltafH(o)m (C2H3O2I, cr)=-(415.44 +/- 1.53) kJ x mol(-1), respectively, by rotating-bomb combustion calorimetry. Vapor pressure versus temperature measurements by the Knudsen effusion method led to deltasubH(o)m(C2H3O2Cl)=(82.19 +/- 0.92) kJ x mol(-1), deltasubH(o)m(C2H3O2Br)=(83.50 +/- 2.95) kJ x mol(-1), and deltasubH(o)m-(C2H3O2I) = (86.47 +/- 1.02) kJ x mol(-1), at 298.15 K. From the obtained deltafH(o)m(cr) and deltasubH(o)m values it was possible to derive deltafH(o)m(C2H3O2Cl, g)=-(427.55 +/- 1.04) kJ x mol(-1), deltafH(o)m (C2H3O2Br, g)=-(383.48 +/- 3.14) kJ x mol(-1), and deltafH(o)m(C2H3O2I, g)=-(328.97 +/- 1.84) kJ x mol(-1). These data, taken with a published value of the enthalpy of formation of acetic acid, and the enthalpy of formation of the carboxymethyl radical, deltafH(o)m(CH2COOH, g)=-(238 +/- 2) kJ x mol(-1), obtained from density functional theory calculations, led to DHo(H-CH2COOH)=(412.8 +/- 3.2) kJ x mol(-1), DHo(Cl-CH2COOH)=(310.9 +/- 2.2) kJ x mol(-1), DHo(Br-CH2COOH)=(257.4 +/- 3.7) kJ x mol(-1), and DHo(I-CH2COOH)=(197.8 +/- 2.7) kJ x mol(-1). A discussion of the C-X bonding energetics in XCH2COOH, CH3X, C2H5X, C2H3X, and C6H5X (X=H, Cl, Br, I) compounds is presented.  相似文献   

15.
The gas-phase acidity of ionized benzyl alcohol and of some of its derivatives with selected reference bases has been studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry. The aim was to relate the gas-phase reactivity to the behavior in aqueous solution of the radical cations of benzyl alcohols bearing methoxy substituent(s) on the phenyl ring which are known to undergo deprotonation at both the CH2 and OH groups. The dual reactivity behavior is confirmed in the gas phase, in which the prototypical ion, C6H5CH2OH*+, is deprotonated at both the CH2 and OH groups, whereas the ring hydrogens are not involved. An increasing extent of O-deprotonation is shown as the strength of the base increases. Appropriate methyl substitution, as in the radical cations of C6H5C(Me)2OH and C6H5CH2OMe, allows only O- or C-acidity. The two processes are characterized by comparable thermodynamic features with a Gas-phase Basicity (GB) value of 852 kJ mol(-1) for the cumyloxyl radical and 850 kJ mol(-1) for the alpha-methoxybenzyl radical. The possible origin of the observed mechanistic dichotomy is discussed.  相似文献   

16.
The complete basis set method CBS-QB3 has been used to study the thermochemistry and kinetics of the esters ethyl propanoate (EP) and methyl butanoate (MB) to evaluate initiation reactions and intermediate products from unimolecular decomposition reactions. Using isodesmic and isogeitonic equations and atomization energies, we have estimated chemically accurate enthalpies of formation and bond dissociation energies for the esters and species derived from them. In addition it is shown that controversial literature values may be resolved by adopting, for the acetate radical, CH3C(O)O(.-), DeltaH(o)(f)298.15K) = -197.8 kJ mol(-1) and for the trans-hydrocarboxyl radical, C(.-)(O)OH, -181.6 +/- 2.9 kJ mol(-1). For EP, the lowest energy decomposition path encounters an energy barrier of approximately 210 kJ mol(-1) (approximately 50 kcal mol(-1)), which proceeds through a six-membered ring transition state (retro-ene reaction) via transfer of the primary methyl H atom from the ethyl group to the carbonyl oxygen, while cleaving the carbon-ether oxygen to form ethene and propanoic acid. On the other hand, the lowest energy path for MB has a barrier of approximately 285 kJ mol(-1), producing ethene. Other routes leading to the formation of aldehydes, alcohols, ketene, and propene are also discussed. Most of these intramolecular hydrogen transfers have energy barriers lower than that needed for homolytic bond fission (the lowest of which is 353 kJ mol(-1) for the C(alpha)-C(beta) bond in MB). Propene formation is a much higher energy demanding process, 402 kJ mol(-1), and it should be competitive with some C-C, C-O, and C-H bond cleavage processes.  相似文献   

17.
Bromo- and iodomethanes and the corresponding halogenated methyl radicals have been investigated by ab initio methods. Geometries and vibrational frequencies were derived with quadratic configuration interaction methods at the QCISD/6-311G(d,p) level of theory, and energies via QCISD(T)/6-311+G(3df,2p). Core electrons were represented with relativistic effective potentials. Anharmonicity of the out-of-plane bending modes in the methyl radicals was taken into account by numerical integration of the Schr?dinger equation with potentials derived from relaxed scans of these modes. The results are in good accord with experimental data where available. Thermochemistry derived via isodesmic reactions referenced to CH3, CH4, and monohalomethanes yields excellent accord with new experiments on dihalomethanes and provides recommendations for the more poorly characterized tri- and tetrahalomethanes and halomethyl radicals. For the methanes CH2Br2, CHBr3, CBr4, CH2I2, CHI3, CI4, CH2BrI, CHBr2I, and CHBrI2 we compute DeltafH degrees (298) values of 4.3, 51.6, 110.6, 108.1, 208.5, 321.3, 56.8, 104.8, and 157.1 kJ mol(-1), respectively. For the methyl radicals CH2Br, CHBr2, CBr3, CH2I, CHI2, CI3, CHBrI, CBr2I, and CBrI2 we compute DeltafH degrees (298) values of 166.6, 191.7, 224.0, 217.2, 290.4, 369.1, 241.6, 320.8, and 272.3 kJ mol(-1), respectively. Recommended confidence limits are +/-3 kJ mol(-1) per Br or I atom. Trends in these values and the corresponding C-H bond strengths are discussed and compared with prior experiments, empirical estimation schemes, and ab initio calculations.  相似文献   

18.
High-level ab initio molecular orbital calculations were employed to explore the potential energy hypersurface of hexasulfur, S(6). Twelve isomeric structures of S(6) have been identified: two unbranched rings (chair and boat), one trigonal prism of D(3h) symmetry, two singly branched rings (S(5)double bondS), three triplet chains, one singlet chain, and three doubly branched rings (Sdouble bondS(4)double bondS). The prism structure is essentially a cluster of three S(2) molecules connected via a six-center pi(*)-pi(*)-pi(*) interaction. It is by 51 kJ mol(-1) less stable than the lowest-energy chair form. The reactions to generate the boat, the prism, and the singly branched isomers from the chair form are predicted to have lower barriers than the ring opening reaction of cyclo-S(6), which requires an activation energy of 149 kJ mol(-1). The prism and singly branched isomers are found to be more reactive species than the chair form and they are potential sources of S(2) in chemical reactions involving elemental sulfur.  相似文献   

19.
Chemical double mutant cycles have been used to measure the magnitude of edge-to-face aromatic interactions in hydrogen-bonded zipper complexes as a function of substituents on both aromatic rings. The interaction energies vary depending on the combination of substituents from +1.0 kJ mol-1 (repulsive), to -4.9 kJ mol-1 (attractive). The results correlate with the Hammett substituent constants which indicates that electrostatic interactions are responsible for the observed differences in interaction energy. The experiments can be rationalised based on local electrostatic interactions between the protons on the edge ring and the pi-electron density on the face ring as well as global electrostatic interactions between the overall dipoles on the two aromatic groups.  相似文献   

20.
An improved method for the preparation of the heme octapeptide acetyl-MP8, obtained by proteolysis of horse heart cytochrome c, is described. AcMP8 obeys Beer's law at pH 7.0 in aqueous solution up to a concentration of 3 x 10(-)(5) M. The self-association constant measured at 25 degrees C (log K(D) = 4.04) is an order of magnitude lower than that for MP8, reflecting the role of the N-acetyl protecting group in abolishing intermolecular coordination. However, AcMP8 does form pi-stacked dimers in aqueous solution with increasing ionic strength. A more weakly packed pi-pi dimer reaches a maximum abundance at approximately 3 M ionic strength, but a more tightly packed dimer is favored at &mgr; > 3 M. An equilibrium model based on charge neutralization by specific binding of Na(+) ions gives a total molecular charge of 3- for AcMP8 at pH 7.0 and a self-association constant log K(D) = 4.20. AcMP8 exhibits six spectroscopically active pH-dependent transitions. The Glu-21 c-terminal carboxylate binds to the heme iron at low pH (pK(a) = 2.1) but is substituted by His-18 (pK(a) = 3.12) as the pH increases. The two heme propanoic acid substituents ionize with pK(a)'s of 4.95 and 6.1. This is followed by ionization of iron-bound water with a pK(a) = 9.59, DeltaH = 48 +/- 1 kJ mol(-)(1), and DeltaS = -22 +/- 3 J K(-)(1) mol(-)(1). The electronic spectra indicate that AcMP8 is predominantly in the S = (5)/(2) state at pH 7.0, while the hydroxo complex at pH 10.5 corresponds to an equilibrium mixture of S = (5)/(2) and S = (1)/(2) states at 25 degrees C. In the final transition, His-18 ionizes to form the S = (1)/(2) histidinate complex with a pK(a) of 12.71. AcMP8 is relatively stable under alkaline conditions, dimerizing slowly at high pH (k = 2.59 +/- 0.14 M(-)(1) s(-)(1)) to form a high-spin &mgr;-oxo-bridged species. The pH-dependent behavior of AcMP8 in the presence of excess 3-cyanopyridine, however, is markedly different. At low pH, AcMP8 simultaneously binds the exogenous ligand and the Glu-21 c-terminal carboxylate with a pK(a) < 2. His-18 replaces the carboxylate ligand at higher pH (pK(a) = 2.60), and both heme propanoic acid groups ionize with a mean pK(a) = 5.10. Unlike AcMP8.OH(-), the axial histidine of the 3-CNPy complex ionizes at near neutral pH (pK(a) = 7.83), prior to being replaced by OH(-) (pK(a) = 10.13). The sixth transition in the AcMP8/3-CNPy system produces the bis(hydroxo) complex (pK(a) > 13).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号