首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The phase behaviour of the {CO2 (1) + cis-decalin (2)} binary system has been experimentally studied at temperatures ranging from (292.75 to 373.75) K. Saturation pressures, ranging from (15.9 to 490.5) bar, were obtained using a variable volume high-pressure cell by visual observation of phase transitions at constant overall composition. For this system, no literature data are available and the results obtained in this study reveal the occurrence of vapor–liquid, liquid–liquid, and vapor–liquid–liquid phase transitions in the investigated temperature range. A total of 133 experimental points are reported including bubble points, dew points, liquid–liquid phase equilibria, and coordinates of the three-phase line. The experimental data can be reasonably predicted by the PPR78 model in which the temperature-dependent binary interaction parameter is calculated by a group contribution method.  相似文献   

2.
The study presents first experimental results of the transfer of magnetite nanoparticles from an aqueous to a second non-miscible non-aqueous liquid phase. The transfer is based on the adsorption of macromolecular surfactants onto the particle surface at the liquid–liquid interface. For a successful direct phase transfer, it is essential to have cations, like ammonium ions, present in the aqueous phase as well as a threshold concentration of surfactant in the organic liquid phase. While penetrating the liquid–liquid interface, the particles are covered with the surfactant and therefore a partial de-agglomeration is initiated. Based on literature and experimental data a mechanism of surfactant adsorption is proposed. The competing adsorption of the surfactant molecules at the liquid–liquid interface leads to the formation of emulsions and therefore to a hindrance for particles passing the interface. Nevertheless a high efficiency of 100% yield can be reached using optimized process parameters for the phase transfer process.  相似文献   

3.
Vapor–liquid equilibria (VLE) and vapor–liquid–liquid equilibria (VLLE) data for the carbon dioxide + 1-heptanol system were measured at 293.15, 303.15, 313.15, 333.15 and 353.15 K. Phase behavior measurements were made in a high-pressure visual cell with variable volume, based on the static-analytic method. The pressure range under investigation was between 0.58 and 14.02 MPa. The Soave–Redlich–Kwong (SRK)-EOS coupled with Huron–Vidal (HV) mixing rules and a reduced UNIQUAC model, was used in a semi-predictive approach, in order to represent the complex phase behavior (critical curve, LLV line, isothermal VLE, LLE, and VLLE) of the system. The topology of phase behavior is qualitatively correct predicted.  相似文献   

4.
To continuously obtain biodiesel of high purity, a membrane separator integrated with liquid–liquid extraction for the oil–FAME–MeOH system is studied. The liquid–liquid phase equilibrium data for the oil–FAME–MeOH are determined experimentally and compared with the general prediction of the modified UNIFAC. The tie line test demonstrates that composition of the methanol-rich phase is free of TG at 20 °C. Using the continuous cross-flow ultrafiltration, the oil-rich phase can be rejected by the ceramic membranes while the methanol-rich phase permeates through the membranes. When the feed bulk composition is controlled within the two-phase zone, such as the oil:FAME:MeOH of 20:30:50 wt.%, the permeate is found to be free of oil while the obtained permeate flux is higher than 300 kg/m2 h under the transmembrane pressure of 600 mmHg and the inlet flow rate of 300 ml/min at 20 °C. By contrast, it shows almost no separation when the inlet concentration of oil–FAME–MeOH locates on its boundary line or within the single-phase zone. The quantitative filtration tests show that the compositions in the two liquid phases and the operating parameters are also considered simultaneously to screen the origin oil and get the FAME product of high purity.  相似文献   

5.
The purpose of this work is to investigate the effect of cooling bath on the membrane preparation of crystalline polymer/diluent system via thermally induced phase separation (TIPS), when the cooling bath is compatible with the diluent. In this work, poly(ethylene-co-vinyl alcohol) (EVOH)/PEG300 system with water and methanol as the cooling baths was proposed. Results showed that when water was used as the cooling bath, the membrane presented an asymmetric structure consisting of a porous skin, macrovoids near the top and lacy structures near the bottom. In contrast, when cooled in the bath of methanol, it showed particulate morphology on the top surface and cellular pores near the bottom. The lacy and cellular structures were the typical structures resulted from liquid–liquid thermally induced phase separation, the novel macrovoids and particulate morphology were then supposed to be induced by the mutual diffusion between the diluent and the cooling bath. In the case of water, the diluent's outflow was comparative with the water's inflow into the membrane, so the penetrated water acted as a strong nonsolvent and induced macrovoids near the top. In the bath of methanol, the diluent's outflow was much faster than the methanol's inflow, which changed the solution composition from a liquid–liquid phase separation region to a solid–liquid phase separation region and resulted in particulate morphology near the top.  相似文献   

6.
The UNIFAC model is extended to mixtures of ionic liquids consisting of the imidazolium cation and the hexafluorophosphate anion with alkanes, cycloalkanes, alcohols and water. Two new main groups, the imidazolium and the hexafluorophosphate groups, are introduced in UNIFAC. The required group interaction parameters between these groups and the existing UNIFAC main groups, CH2, OH and H2O, are determined by fitting binary liquid–liquid equilibrium and infinite dilution activity coefficient experimental data. The predictive capability of the extended UNIFAC model is examined against experimental data for vapour–liquid equilibrium, liquid–liquid equilibrium and activity coefficients at infinite dilution of binary and ternary systems containing 1-alkyl-3-alkyl′-imidazolium hexafluorophosphate ionic liquids, alkanes, cycloalkanes, alcohols and water. The results indicate that UNIFAC is a reliable model for phase equilibrium predictions in mixtures containing this type of ionic liquids.  相似文献   

7.
This work demonstrates the ability of the 1-alkyl-3-methylimidazolium hexafluorophosphate to act as an extraction solvent in petrochemical processes for the removal of alkanes from their azeotropic mixture with ethanol. LLE (liquid–liquid equilibrium) of the ternary systems hexane + ethanol + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF6) or 1-octyl-3-methylimidazolium hexafluorophosphate (OMIM PF6) and heptane + ethanol + OMIM PF6 are carried out at 298.15 K and atmospheric pressure. Experimental liquid–liquid data are correlated by using different equations. The solute distribution ratio and the selectivity, determined from tie-line data, suggest the efficiency of the ILs used as solvents. A comparison with other IL, in terms of solvent capacity, is included. The liquid–liquid extraction process is simulated by using conventional software and the obtained results are shown.  相似文献   

8.
The present work was undertaken to determine liquid–liquid equilibria for ternary systems involved in the citrus essential oil terpeneless using dilute alcohol. Tie-line data have been determined for the linalool + ethanol + water, water + ethanol + limonene, and limonene + linalool + water ternary systems at 298.15 K. The experimental data were satisfactorily correlated using the UNIQUAC and NRTL equations, and the obtained binary interaction parameters are reported. The UNIFAC group-contribution method did not allow adequate predictions of liquid–liquid equilibria involved in this study.  相似文献   

9.
We investigated the removal of aromatics from a typical Kuwait middle distillate using liquid–liquid extraction. A multicomponent system; dodecane + hexadecane + 1,3,5-trimethyl benzene (mesitylene) + butylbenzene; was used to represent the middle distillate mixture. N-methyl-2-pyrrolidone (NMP) was used as a solvent. The liquid–liquid equilibria (LLE) of the mixture was studied over a temperature range of 293–323 K and at different solvent to feed ratios (1.35–1.97). The selectivity and distribution coefficient of the solvent were correlated successfully using the universal quasi-chemical (UNIQUAC) model for the pseudo-ternary system (paraffins (1) + aromatics (2) + NMP (3)) at the studied temperature range. The UNIQUAC model fit the experimental data with an average percentage root mean square deviation (rmds) of 0.2980%.  相似文献   

10.
A simple liquid–liquid–liquid microextraction device of new design was used to pre-concentrate phenols from water samples before liquid chromatographic (LC) analysis. Extraction was induced by the pH difference inside and outside an organic phase located at the interface. The pH of the donor phase outside the organic phase was adjusted to 1 with HCl whereas the acceptor phase was a basic solution at pH 13. On stirring neutral phenols were extracted into the organic solvent then back-extracted into 1 μL of basic acceptor solution suspended from the tip of a micro syringe. The acceptor phase was then withdrawn into the micro syringe and injected directly into the LC. The technique uses a low-cost disposable extraction ‘device’ and is very convenient to operate. Up to 230-fold enrichment of analytes could be achieved. This procedure could also serve as a sample clean-up step because neutral and basic compounds were not extracted into the acceptor phase. The RSD (n = 5) was better than 6.2% and the linear calibration range was from 1 to 1000 µg–L−1 with r 2 ≥ 0.992.Optimization of experimental conditions (rate of stirring, ionic strength of the sample solution, concentration of reagents, time of extraction, and organic solvent volume) were also examined. The method was applied to the determination of phenols in tap and well waters.Revised: 14 February and 29 March 2005  相似文献   

11.
We adapted a new perturbation term reported by Bokis et al. for the modified perturbed hard-sphere-chain (PHSC) equation of state. The new model better agrees with the simulation data for illustrating both repulsive and attractive contributions than those of the PHSC equation of state. Three characteristic parameters, r, σ, and , are obtained from thermodynamic properties of pure saturated species and directly used to calculate coexistence curves of given binary systems. Vapor–liquid equilibria and liquid–liquid equilibria of fluids are remarkably well predicted by the model even in the case of polymer solution that shows non-ideal phase behavior.  相似文献   

12.
Two ultrasound-assisted liquid–liquid extraction (LLE-I, LLE-II) methods were compared to a solid-phase extraction (SPE) protocol to assess their effectiveness for the analysis of up to 44 volatile compounds in a synthetic and several commercial white, red and “cream” wines produced in the southwest of Spain. Regardless of the extraction protocol used the highest recoveries corresponded to acids and terpene alcohols and the lowest to lactones and alcohols. In any case, it was concluded that one of the liquid–liquid extraction protocols evaluated led to higher recoveries for a greater number of odorants that could be implicated in the aroma of the wines than the solid-phase extraction. However, the SPE method also presented some advantages that should not be overlooked, like higher repeatability and throughput and lower solvent consumption.  相似文献   

13.
Particle swarm optimization is a novel evolutionary stochastic global optimization method that has gained popularity in the chemical engineering community. This optimization strategy has been successfully used for several applications including thermodynamic calculations. To the best of our knowledge, the performance of PSO in phase stability and equilibrium calculations for both multicomponent reactive and non-reactive mixtures has not yet been reported. This study introduces the application of particle swarm optimization and several of its variants for solving phase stability and equilibrium problems in multicomponent systems with or without chemical equilibrium. The reliability and efficiency of a number of particle swarm optimization algorithms are tested and compared using multicomponent systems with vapor–liquid and liquid–liquid equilibrium. Our results indicate that the classical particle swarm optimization with constant cognitive and social parameters is a reliable method and offers the best performance for global minimization of the tangent plane distance function and the Gibbs energy function in both reactive and non-reactive systems.  相似文献   

14.
In this study, the strong morphology changes of polyvinylidene fluoride (PVDF) membrane were demonstrated by changing phase separation process from a diffusion induced phase separation (DIPS) to its combination with a thermally induced phase separation (TIPS) which can be attained via changing the diluent – dibutyl phthalate (DBP) content in solvent – N,N-dimethylacetamide (DMAc). The solvent became poor when it mixed with DBP, so TIPS could occur in the quenching process which resulted in a rapid crystallization process. In this process, the porous skin and interlocked small crystallite particle (or bi-continuous) morphologies were formed, while the porous skin and leaf-like network morphology came from the rapidly crystallizing in TIPS, the large spherulite and dense skin could be attributed to the relaxed crystallization in DIPS, the finger-like macro-void and dense skin resulted from the liquid–liquid phase separation in DIPS. Simply speaking, the different membrane morphologies can be obtained by changing the DBP content in DMAc and the coagulation bath temperature.  相似文献   

15.
The van der Waals gradient theory (vdW GT) is used to calculate surface tension, density profiles, adsorption, the Tolman length and to determine the position of dividing surfaces in the liquid–gas interface of an oxygen–nitrogen solution. The Helmholtz energy density (HED) is determined via an equation of state (EOS), unified for a liquid and gas, which describes stable, metastable and two-phase states of solutions. The influence parameters are calculated from data on the surface tension of pure components with the use of the mixing rule. At temperatures T > 100 K the vdW GT describes experimental data on the surface tension of oxygen–nitrogen solutions [V.G. Baidakov, A.M. Kaverin, V.N. Andbaeva, The liquid–gas interface of oxygen–nitrogen solutions: 1. Surface tension, Fluid Phase Equilib. 270 (2008) 116–120] within the experimental error. It is shown that the Tolman length, which determines the dependence of surface tension on the curvature of the dividing surface, depends considerably on the solution concentration.  相似文献   

16.
The results of new isochoric heat capacity measurements of H2O + Na2CO3 solutions as a function of temperature along several isochores in the near-critical region of pure water are reported. The measurements cover temperatures from 331 to 661 K at Na2CO3 mole fraction 0.008869. The experiments were performed at seven densities between 245 and 875 kg-m–3. The measurements were made in a high-temperature, high-pressure, adiabatic, and nearly constant-volume calorimeter. Uncertainties of the isochoric heat capacity measurements are estimated to be 1–2% in the liquid phase, 2–3% in the vapor phase, and 4–5% near the critical point. Measurements were made in the two-phase (vapor–liquid, liquid–solid, vapor–solid) and three-phase (vapor–liquid–solid) regions. Two peaks in isochoric heat capacity have been found near the critical point of pure water. One of the peaks at T S1 occurs on the three-phase (L–V–S) curve and another peak at T S2 corresponds to a two-phase (L–S or V–S) curve. The experimental values of phase transition temperatures T S() on each isochore was determined. Uncertainty in the phase transition temperature measured was no greater than ±0.03 to 0.05 K.  相似文献   

17.
A high preconcentration method by liquid–liquid extraction using liquid surfactant membranes was developed. The water-in-oil (w/o) emulsion containing dilute hydrochloric acid, 2-ethylhexyl hydrogen 2-ethylhexylphosphonate (PC-88A), liquid paraffin, and kerosene was used for the extraction. In a resulting volume of 1000 cm3 of an aqueous sample solution (pH 5.0) containing less than 1 mg of each metal ion, 2 cm3 of w/o emulsion droplets coated with sorbitan monooleate were dispersed. The analyte metal ions in the outer bulk aqueous phase were extracted into the organic phase to form a complex with PC-88A and successively back-extracted into the inner aqueous phase. The analytes in the resulting inner aqueous phase were determined subsequently by graphite furnace atomic absorption spectrometry applied as a detector. By this procedure, concentration factors of 570, 820, 750, 970, 860, and 880 were achieved for chromium(III), manganese(II), cobalt(II), nickel(II), copper(II), and cadmium(II), respectively, and also the respective detection limits (3σ) of 0.4, 20, 1.2, 18, 18, and 0.7 pg cm−3 were obtained.  相似文献   

18.
A powerful preconcentration method for nonylphenol (NP) has been developed for liquid-chromatography by combining the use of cellulose cotton (solid-phase extraction) with homogeneous liquid–liquid extraction. A 100 ml of sample solution was preconcentrated using cotton, and the eluate obtained (acetonitrile; 5 ml) was further preconcentrated to 50 l within 10 min using a homogeneous liquid–liquid extraction method (volume ratio, 2,000-fold; 100 ml 50 l). The sample concentration increases from preconcentration was 1,599-fold, and NP was extracted into the sedimented phase at 80%. The proposed method was applied to high performance liquid chromatography with fluorescence detection (FL/HPLC); the lowest determination limit obtained was 1.0×10–9 mol l–1.  相似文献   

19.
Liquid–liquid equilibrium data, both binodal and tie lines are presented for the pseudo-ternary systems: {(sulfolane + 2-ethoxyethano) (1) + octane (2) + toluene (3)} at 293.15 K. The experimental liquid–liquid equilibrium data have been correlated using NRTL and UNIQUAC models, and the binary interaction parameters of these components have been presented. The correlated tie lines have been compared with the experimental data. The comparisons indicate that both NRTL and UNIQUAC models satisfactorily correlated the equilibrium compositions. The tie-line data of the studied systems also were correlated using the Hand method.  相似文献   

20.
A survey dealing with the use of anhydrous potassium carbonate as an efficient base for promoting organic reactions under solid–liquid phase transfer catalysis (SL-PTC) conditions is reported. In particular, the generation in situ of trifluoro- and trichloroacetamidide, and reactions of these azaanions with 2-bromocarboxylic esters and epoxides, affording protected α-amino acids and β-amido alcohols, respectively, are described. The reduction of allylic nitroderivatives with CS2 to oximes or nitriles under SL- and liquid–liquid PTC (LL-PTC) is also presented. Finally, new preparation methods and a study of the reactivity of quaternary onium fluorides, hydrogendifluorides and dihydrogentrifluorides, together with the use of dihydrogentrifluorides as hydrofluorinating agents under SL-PTC conditions, are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号