首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P. L. Zhu 《Chromatographia》1986,21(4):229-233
Summary An equation is derived which can describe how the retention of solutes is influenced by the composition of the mobile phase in reversed-phase liquid chromatography, the retention of solutes in alkyl bonded stationary phase regarded as the complexation between solute molecule and the active sites on the surface of the stationary phase. When the stationary phase is not fully saturated by the organic modifier, the activity of the active sites, the activity coefficient of the adsorbed solute as well as the activity coefficient of the solute in the mobile phase depend on the composition of the mobile phase. However, when the stationary phase is fully saturated, the composition of the mobile phase mainly influences the activity coefficient of the solute in the mobile phase. In addition, the selectivity of retention is discussed in terms of the derived equation.  相似文献   

2.
Molecular simulations of water/acetonitrile and water/methanol mobile phases in contact with a C(18) stationary phase were carried out to examine the molecular-level effects of mobile phase composition on structure and retention in reversed-phase liquid chromatography. The simulations indicate that increases in the fraction of organic modifier increase the amount of solvent penetration into the stationary phase and that this intercalated solvent increases chain alignment. This effect is slightly more apparent for acetonitrile containing solvents. The retention mechanism of alkane solutes showed contributions from both partitioning and adsorption. Despite changes in chain structure and solvation, the molecular mechanism of retention for alkane solutes was not affected by solvent composition. The mechanism of retention for alcohol solutes was primarily adsorption at the interface between the mobile and stationary phase, but there were also contributions from interactions with surface silanols. The interaction between the solute and surface silanols become very important at high concentrations of acetonitrile.  相似文献   

3.
王晓妮  张洁等 《中国化学》2003,21(3):311-319
With the combination of the the stoichiometric displacement model for retention (SDM-R) in reversed phase liquid chromatography (RPLC) and the stoichiometric displacement model for adsorption (SDM-A) in physical chemistry,the total number of moles of the re-solvated methanol of stationary phase side.nr,and that of solute side in the mobile phase,q,corresponding the one mole of the desorbing solute,were separately determined and referred as the characterization parameters of the contributions of the adsorption mechanism and partition mechanism to the solute retention,respectively.A chromatographic system of insulin,using mobile phase consisting of the pseudo-homologue of alcohols(methanol,ethanol and 2-propanol)-water and trifluoroacetic acid was employed.The maximum number of the methanol layers on the stationary phase surface was found to be 10.6,only 3 of which being valid in usual RPLC,traditionally referred as a volume process in partition mechanism.However,it still follows the SDM-R.Both of q and nr of insulin were found not to be zero,indicating that the retention mechanism of insulin is a mixed mode of partition mechanism and adsorption mechanism.When methanol is used as the organic modifier,the ratio of q/nr was 1.13,indicating the contribution to insulin retention due to partition mechanism being a bit greater than that due to adsorption mechanism.A linear relationship between q,or nr and the carbon number of the pseudo-homologue in the mobile phase was also found.As a methodology for investigating the retention mechanism retention and behavior of biopolymers.a homologue of organic solvents as the organic modifier in mobile phase has also been explored.  相似文献   

4.
Summary Reversed-phase thin-layer chromatography (RP-TLC) and reversed-phase high performance thin-layer chromatography (RP-HPTLC) of barbiturates and pyrazolones have been carried out on Merck and Whatman pre-coated plates (including C18 and diphenyl bonded phases). The behaviour of these stationary phases against some characteristics of the mobile phase: composition, the nature of the organic modifier, the addition of salt and of the bonded stationary phase were investigated and compared.  相似文献   

5.
The retention mechanisms of n-propylbenzoate, 4-t ert-butylphenol, and caffeine on the endcapped Symmetry-C(18) and the non-endcapped Resolve-C(18) are compared. The adsorption isotherms were measured by frontal analysis (FA), using as the mobile phase mixtures of methanol or acetonitrile and water of various compositions. The isotherm data were modeled and the adsorption energy distributions calculated. The surface heterogeneity increases faster with decreasing methanol concentration on the non-endcapped than on the endcapped adsorbent. For instance, for methanol concentrations exceeding 30% (v/v), the adsorption of caffeine is accounted for by assuming three and two different types of adsorption sites on Resolve-C(18) and Symmetry-C(18), respectively. This is explained by the effect of the mobile phase composition on the structure of the C(18)-bonded layer. The bare surface of bonded silica appears more accessible to solute molecules at high water contents in the mobile phase. On the other hand, replacing methanol by a stronger organic modifier like acetonitrile dampens the differences between non-endcapped and endcapped stationary phase and decreases the degree of surface heterogeneity of the adsorbent. For instance, at acetonitrile concentrations exceeding 20%, the surface appears nearly homogeneous for the adsorption of caffeine.  相似文献   

6.
In consideration of the adsorption of solvent, diluent and solute molecules on the surface of a stationaryphase, a new equation for solute retention in liquid chromatography is presented. This equation includesthree parameters: the displacement equilibrium constant (Ksd) between the solvent and diluent molecules onthe surface of the stationary phase, the total number(N) of the solvent and diluent molecules released fromthe stationary phase after one solute molecule being adsorbed, and the parameter (I) related to the thermody-namic equilibrium constant for the solute adsorption on the stationary phase. Over the whole concentrationrange of the solvent in the mobile phase, the experimental retention data can be well described by this equa-tion, parameters K~, N and I can be obtained by the regression analysis of the experimental retention data,and consequently the number of the solvent and the diluent molecules displaced by one solute molecule fromthe stationary phase can also be derived at different solvent concentrations in the mobile phase,  相似文献   

7.
Lipophilicity is one of the properties which influences the partition of a substance in biological media. The present study reports on the chromatographic behaviour of a newly synthesised series of furan derivatives by RP-HPLC and RP-TLC, with methanol-water and acetonitrile-water as mobile phases, in order to establish if the linear relationships between the retention parameters (log k, R(M)) and the concentration of organic modifier in the mobile phase, phi, allows the extrapolation procedure. Good correlations between the retention parameters were obtained by RP-HPLC and RP-TLC, and the concentration of organic modifier (methanol, acetonitrile) in the mobile phase was established for the studied furan derivatives. However, for the discussed compounds, acetonitrile has a lower sensitivity to changes in the structures. A good correspondence was obtained between the extrapolated parameters for the methanol-water mobile phase when using RP-HPLC and RP-TLC. However, stronger interactions occur in RP-TLC between the compounds and the residual silanol groups than in RP-HPLC.  相似文献   

8.
A semi-thermodynamic treatment is adopted to account for adsorption or partition of solute molecules from aqueous mobile phases on/in reversed-phase liquid chromatography stationary phases. The theoretical expressions of ln k' versus organic modifier content are tested against 10 data sets covering a variety of solute molecules. It is shown that the mean field approximation, adopted widely in ptevious studies, is marginally valid in aqueous mobile phases, especially in the presence of solute molecules, and the lattice model approximation, which is also used in relevant studies, is a poor approximation. Clear conclusions about the validity of either the adsorption or the partition model for the retention mechanism could not be drawn. The equations of the adsorption model describe all data sets absolutely satisfactorily and yield a physically reasonable picture about the behavior of modifier and solvent at the adsorbed layer. However, the high applicability of the adsorption model may not safely entail the validity of the adsorption mechanism at a molecular level, especially in the case of solutes with small and non-polar molecules, where our analysis gives strong indications about the validity of the partition mechanism. The next steps needed for the final elucidation of the retention mechanism in reversed-phase chromatographic columns are indicated.  相似文献   

9.
A novel approach was introduced to modeling solute retention in the liquid chromatography systems, employing silica-based aliphatic chemically bonded stationary phases of the cyano, reversed-phase C8 and reversed-phase C18 types, and the mixed binary eluents most frequently used in the reversed-phase and normal-phase chromatography modes (i.e. using the methanol-water and the 2-propanol-n-hexane liquid mixtures, respectively). This approach takes notice of the mixed (adsorption/partition) mechanism of solute retention, in which both, the adsorptive and the dispersive forces contribute to the overall energetics of this process. Performance of our new model was compared with that of the widely recognized and on a routine basis applied Schoenmakers approach, and it was found out that both models perform with a practically equal and outstanding accuracy.  相似文献   

10.
The surface excess adsorption isotherms of water, acetonitrile, and methanol from binary hydro‐organic mobile phases were investigated on nine home‐made stationary phases with chemically bonded amino acids, dipeptides, and tripeptides using the dynamic minor disturbance method. The stationary phases were modified by the following amino acids: glycine, alanine, phenylalanine, leucine, and aspartic acid. We investigated the influence of the type of immobilized amino acids, in particular their different side chains, on the solvent adsorption. The interpretation of solvation phenomena shows significant accumulation of investigated solvents on the adsorbent surface according to their hydrophilic or hydrophobic properties. Moreover, the accumulated amount was dependent on the length and type of amino acid sequences bonded to the silica surface. Stationary phases with bonded amino acids and peptides show stronger water and acetonitrile adsorption in contrast to the stationary phase modified with aminopropyl groups—a support for the synthesis. The comparison of water and acetonitrile adsorption as well as a data obtained with the two‐site adsorption model reveal and confirm the heterogeneity of chemically bonded phases. As a consequence of performed investigations, the classification of tested stationary phases for the potential usage in particular high‐performance liquid chromatography mode was also accomplished.  相似文献   

11.
The chromatographic behavior of 8 ionic liquids - 7 homologues of 1-alkyl-3-methylimidazolium and 4-methyl-N-butylpyridinium - has been investigated with a strong cation exchange adsorbent. In particular, the dependence of the retention properties of these solutes on mobile phase composition, pH, and buffer concentration was evaluated with the aim of optimizing and improving the selectivity and retention of solute separation. While using the SCX stationary phase, several interactions occurred with varying strengths, depending on the mobile phase composition. Cation exchange, nonspecific hydrophobic interactions, and adsorption chromatography behavior were observed. Reversed phase chromatography occurred at low concentrations of acetonitrile, electrostatic and adsorption interactions at higher organic modifier concentrations. Elevated buffer concentrations lowered the retention factors without affecting the selectivity of ionic liquids. Obtained results were further compared to the chromatographic behaviour of ionic liquids in the reversed phase system. All analyzed ionic liquids follow reversed-phase behavior while being separated. Much lower selectivity in the range of highly hydrophilic compounds is obtained. This suggests preferred use of ion chromatography for separation and analysis of compounds below 4 carbon atoms in the alkyl side chain.  相似文献   

12.
Regularities of the chromatographic retention and thermodynamics of the adsorption of enantiomers of α-phenylcarboxylic acids on a chiral stationary phase with immobilized macrocyclic antibiotic eremomycin under conditions of reversed-phase liquid chromatography with aqueous-ethanol mobile phases are studied. Relationships between the retention characteristics of the acids, the enantioselectivity of their separation, and the concentration of organic modifier in the mobile phase are found. It is shown that the sterical structure of substituents on the chiral atoms of the acids affect the mechanism of retention. The compensation effect in the studied systems is considered.  相似文献   

13.
Whereas the retention rules of achiral compounds are well defined in high-performance liquid chromatography, on the basis of the nature of the stationary phase, some difficulties appear in super/subcritical fluid chromatography on packed columns. This is mainly due to the supposed effect of volatility on retention behaviours in supercritical fluid chromatography (SFC) and to the nature of carbon dioxide, which is not polar, thus SFC is classified as a normal-phase separation technique. Moreover, additional effects are not well known and described. They are mainly related to density changes of the mobile phase or to adsorption of fluid on the stationary phase causing a modification of its surface. It is admitted that pressure or temperature modifications induce variation in the eluotropic strength of the mobile phase, but effects of flow rate or column length on retention factor changes are more surprising. Nevertheless, the retention behaviour in SFC first depends on the stationary phase nature. Working with polar stationary phases induces normal-phase retention behaviour, whereas using non-polar bonded phases induces reversed-phase retention behaviour. These rules are verified for most carbon dioxide-based mobile phases in common use (CO(2)/MeOH, CO(2)/acetonitrile or CO(2)/EtOH). Moreover, the absence of water in the mobile phase favours the interactions between the compounds and the stationary phase, compared to what occurs in hydro-organic liquids. Other stationary phases such as aromatic phases and polymers display intermediate behaviours. In this paper, all these behaviours are discussed, mainly by using log k-log k plots, which allow a simple comparison of stationary phase properties. Some examples are presented to illustrate these retention properties.  相似文献   

14.
The retention of aromatic hydrocarbons with polar groups has been correlated as log k1 versus log k2 for reversed-phase high-performance liquid chromatography systems with different binary aqueous mobile phases containing methanol, acetonitrile or tetrahydrofuran as modifiers. Distinct changes in separation selectivity have been observed between tetrahydrofuran and acetonitrile or methanol systems. Methanol and acetonitrile systems show lower diversity of separation selectivity. The changes in retention and selectivity of aromatic hydrocarbons with various polar groups between any two chromatographic systems with binary aqueous eluents (tetrahydrofuran vs. acetonitrile, tetrahydrofuran vs. methanol and methanol vs. acetonitrile) have been interpreted in terms of molecular interactions of the solute with especially one component of the stationary phase region, i.e. extracted modifier, and stationary phase ordering. The ordering of the stationary phase region caused by modifier type influences the chromatographic selectivity of solutes with different molecular shape.  相似文献   

15.
考虑到气相中溶质分子和其它成分在固定相上的竞争吸附作用,提出了一个描述溶质在气相色谱中进样量和保留值的关系式.由此方程可以获得两个描述色谱体系特征的重要参数:溶质和其它成分在固定相表面竞争吸附的热力学平衡常数Ka和单位体积固定相所能吸附溶质的量NmS.当其它参数给定时,Ka的大小直接决定溶质进样量与保留值关系式的性质.通过试验对此方程进行了初步验证.  相似文献   

16.
An experimental design was carried out for describing the interaction mechanisms between solutes and octadecyl bonded silicas in subcritical fluid chromatography (SubFC), with CO2-methanol and CO2-acetonitrile mobile phases. The effects of modifier amount, temperature and outlet pressure were studied. The homologous series of alkylbenzenes was mainly used as probe, and results were in part assessed with other series. Curves between the methylene selectivity (alphaCH2) and the alkyl chain carbon number (Cn) were plotted, because changes of slope or discontinuity in these curves are yielded by interaction mechanism modifications. Moreover, the linearity of the Van 't Hoff curves with CO2-acetonitrile mobile phases has enabled one to calculate the transfer enthalpy (deltaH) for each homologue. The curves log k = f(-deltaH) allow a discrimination of the retention behaviors between the short and the long homologues for CO2-acetonitrile mobile phases. Depending on the analytical conditions, different oriented partition mechanisms occur for the long homologues, when the short ones seem to be fully embedded into the grafted chains near the silica surface. With methanol-CO2 mobile phases the discrimination between the homologues disappears and the methylene selectivity curves correspond to a bulk partition mechanism. The differences in the interaction mechanisms following the modifier nature are related to the adsorption the mobile phase onto the stationary phase, because the amount of adsorbed mobile phase modifies the bonded chain mobility. With methanol, an important adsorption of the mobile phase occurs, when this adsorption is reduced with acetonitrile. In this latter case, an anisotropy in the stationary phase mobility can explain the observed difference in the interaction mechanisms of homologues. Finally, effects of stationary phase chain length (from C18 to C22) and bonding density (from 2.5 to 3.4 micromol m(-2)) were also reported.  相似文献   

17.
The effect of different modifiers in subcritical fluid chromatography (SubFC) on interactions between solute and porous graphitic carbon (PGC) and between solute and carbon dioxide-modifier mobile phases was studied by the use of linear solvation energy relationships (LSERs). This study was performed to allow efficient optimization of the composition of the carbon dioxide-modifier mobile phase in regard of the chemical nature of the solutes to be separated. With all modifiers tested (methanol, ethanol, n-propanol, isopropanol, acetonitrile, tetrahydrofuran and hexane), the solute/stationary phase interactions are greater than the solute/mobile phase ones. Dispersion interactions and charge transfer between electron donor solute and electron acceptor PGC mainly explain the retention on this surface, whatever the modifier. These interactions are quite constant over the range of modifier percentage studied (5-40%). For acidic compounds, the retention variation is mainly related to the change in the basic character of mobile and stationary phase due to the variation of modifier percentage. Changes in eluting strength are mostly related to adsorption of mobile phase onto the PGC with methanol and acetonitrile, and to the increase of dispersion interactions between the solute and the mobile phase for other modifiers. Relationships between varied selectivities and solvation parameter values have been studied and are discussed in this paper.  相似文献   

18.
乳状液对色谱过程的影响   总被引:1,自引:0,他引:1  
江宇雷  李希 《色谱》2004,22(6):620-623
运用特征线法和多流动相色谱的概念,从理论上研究了在非线性色谱过程中流动相为乳状液时其溶质浓度波的类型与特征。当流动相为乳状液时,溶质在乳状液的内相和外相之间发生分配并同时在固定相上进行吸附,此时其浓度波图像与流动相为均相时有很大不同。结合相应的算例分析并讨论了表面活性剂在乳状液内相和外相间的分配关系及其在固定相上的吸附等温线为Langmuir型时其浓度波的各种运动图像及形成机理,并与流动相为均相时的色谱过程作了比较。分析结果表明,多流动相的存在可能使简单波“陡峭化”而成为激波,或使激波溃散为简单波。  相似文献   

19.
The influence of the mobile-phase composition on the retention of eight model substances in different RP-HPLC systems with a C(30) alkyl bonded stationary phase has been studied. The aim of this study was to compare the performance of four valuable retention models assuming the partition and adsorption mechanism of retention. All the models were verified for different experimental data by four criteria: the sum of squared differences between the experimental and theoretical data; the approximation of the standard deviation; the Fisher test; and the F-test ratio.  相似文献   

20.
To understand the chromatographic process as a whole, whether it be for gas chromatography (GC), liquid chromatography (LC), or supercritical fluid chromatography (SFC), one needs to know the chemical and physical nature of the mobile and stationary phases and also the interactions that take place between analytes (solutes) and the two phases. An approach towards Investigating the ways that stationary and mobile phases contribute to chromatographic retention Involves exploring the effects of solvent polarity on the strength of the mobile phase. In SFC this could involve determining the polarity of several different modifier/carbon dioxide mobile phases. In this paper, the use of a solvatochromic indicator to learn more about the effects of SFC modifier/mobile phase polarity will be investigated and discussed using several different modifiers and a diolmodified silica column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号