首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first coupled operando EPR/UV‐Vis/ATR‐IR spectroscopy setup for mechanistic studies of gas‐liquid phase reactions is presented and exemplarily applied to the well‐known copper/TEMPO‐catalyzed (TEMPO=(2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl) oxidation of benzyl alcohol. In contrast to previous proposals, no direct redox reaction between TEMPO and CuI/CuII has been detected. Instead, the role of TEMPO is postulated to be the stabilization of a (bpy)(NMI)CuII‐O2??‐TEMPO (bpy=2,2′‐bipyridine, NMI=N‐methylimidazole) intermediate formed by electron transfer from CuI to molecular O2.  相似文献   

2.
Operando EPR, XANES/EXAFS, UV-Vis and ATR-IR spectroscopic methods have been coupled for the first time in the same experimental setup for investigation of unclear mechanistic aspects of selective aerobic oxidation of benzyl alcohol by a Cu/TEMPO catalytic system (TEMPO=2,2,6,6-tetramethylpiperidinyloxyl). By multivariate curve resolution with alternating least-squares fitting (MCR-ALS) of simultaneously recorded XAS and UV-Vis data sets, it was found that an initially formed (bpy)(NMI)CuI- complex (bpy=2,2′-bipyridine, NMI=N-methylimidazole ) is converted to two different CuII species, a mononuclear (bpy)(NMI)(CH3CN)CuII-OOH species detectable by EPR and ESI-MS, and an EPR-silent dinuclear (CH3CN)(bpy)(NMI)CuII(μ-OH)2 ⋅ CuII (bpy)(NMI) complex. The latter is cleaved in the further course of reaction into (bpy)(NMI)(HOO)CuII-TEMPO monomers that are also EPR-silent due to dipolar interaction with bound TEMPO. Both Cu monomers and the Cu dimer are catalytically active in the initial phase of the reaction, yet the dimer is definitely not a major active species nor a resting state since it is irreversibly cleaved in the course of the reaction while catalytic activity is maintained. Gradual formation of non-reducible CuII leads to slight deactivation at extended reaction times.  相似文献   

3.
Ionic Structures of 4- and 5-coordinated Silicon. Novel Ionic Crystal Structures of 4- and 5-coordinated Silicon: [Me3Si(NMI)]+ Cl?, [Me2HSi(NMI)2]+ Cl?, [Me2Si(NMI)3]2+ 2 Cl?. NMI Me3SiCl forms with N-Methylimidazole (NMI) a crystalline 1:1-compound which is stable at room temperature. The X-ray single crystal investigation proves the ionic structure [Me3Si(NMI)]+Cl? 1 which is the result of the cleavage of the Si? Cl bond and the addition of an NMI-ring. The reaction of Me2HSiCl with NMI (in the molar ratio of 1:2), under cleavage of the Si? Cl bond and co-ordination of two NMI rings, yields the compound [Me2HSi(NMI)2]+Cl? 2 . The analogous reaction of Me2SiCl2 with NMI (molar ratio 2:1) leads to a compound which consists of Me2SiCl2 and NMI in the molar ratio of 1:2. During the sublimation single crystals of the compound [Me2Si(NMI)3]2+ 2 Cl?. NMI 3 are formed.  相似文献   

4.
For electrocatalytic water splitting, the sluggish anodic oxygen evolution reaction (OER) restricts the cathodic hydrogen evolution reaction (HER). Therefore, developing an alternative anodic reaction with accelerating kinetics to produce value‐added chemicals, especially coupled with HER, is of great importance. Now, a thermodynamically more favorable primary amine (?CH2?NH2) electrooxidation catalyzed by NiSe nanorod arrays in water is reported to replace OER for enhancing HER. The increased H2 production can be obtained at cathode; meanwhile, a variety of aromatic and aliphatic primary amines are selectively electrooxidized to nitriles with good yields at the anode. Mechanistic investigations suggest that NiII/NiIII may serve as the redox active species for the primary amines transformation. Hydrophobic nitrile products can readily escape from aqueous electrolyte/electrode interface, avoiding the deactivation of the catalyst and thus contributing to continuous gram‐scale synthesis.  相似文献   

5.
In the previous paper3), we reported a method of synthesizing nitriles from benzyl and alkyl amines by using nickel peroxide as an oxidant. In these reactions, the reaction was initiated by the hydrogen radical abstraction from the methylene and amino groups by nickel peroxide and produced the aldimine intermediate, which was further oxidized to a nitrile. Several papers have been reported describing one-step syntheses of nitriles from the corresponding aldehydes and ammonia in the liquid phase by the oxidation with several kinds of oxidants.  相似文献   

6.
A nitrogen-doped carbon-supported Co catalyst (Co/N-C-800) was discovered to be highly active for the reductive amination of carbonyl compounds with NH3 and the hydrogenation of nitriles into primary amines using H2 as the hydrogen source. Structurally diverse carbonyl compounds were selectively transformed into primary amines with good to excellent yields (82.8–99.6%) under mild conditions. The Co/N-C-800 catalyst showed comparable or better catalytic performance than the reported noble metal catalysts. The Co/N-C-800 catalyst also showed high activity for the hydrogenation of nitriles, affording the corresponding primary amines with high yields (81.7–99.0%). An overall reaction mechanism is proposed for the reductive amination of benzaldehyde and the hydrogenation of benzonitrile, which involves the same intermediates of phenylmethanimine and N-benzylidenebenzylamine.  相似文献   

7.
Gas-phase ion–molecule reactions of transition metal ions, M+ (M+ = Ni+, Co+, Fe+ and Mn+), with six aromatic ring-containing nitriles were investigated in a modified fast atom bombardment (FAB) source. It is shown that the monoadduct, (Ph(CH2)nCN)–M+, is one of the most abundant ion–molecule reaction products. The main fragments in the FAB source are the [C7H7]+ and [C8H9]+ ions, and their formation is shown to involve metal ion insertion into the nitriles rather than direct bond cleavage from the ‘free’ or complexed nitriles after FAB ionization. An intramolecular oxidation–reduction reaction, giving [C7H7]+, is found in the metastable and collisionally induced dissociations of benzyl nitrile adducts accompanied by neutral MCN formation, but not seen for longer chain samples. An ortho effect is observed in the elimination of HCN from the 2-methylbenzyl nitrile adduct ions. This reaction dominates the metastable ion spectrum of the adduct of Mn+, whereas metal detachment is nearly the major process for the other complexes of Mn+. The different bond-insertion selectivities of the metal ions are also shown.  相似文献   

8.
N,N-Dimethylhydrazones of aldehydes undergo a rapid oxidative cleavage to form nitriles in very high yields on reaction with HOF·CH3CN under mild conditions. The reaction is chemoselective and proceeds rapidly without racemization. The nitriles were resistant to further oxidation, even when a large excess of the reagent was employed.  相似文献   

9.
10.
This work reports the reduction of nitriles to the corresponding primary amines with silanes catalyzed by oxo-rhenium complexes. The catalytic system PhSiH3/ReIO2(PPh3)2 (10 mol %) reduced efficiently a series of nitriles in the presence of a wide range of functional groups such as -Cl, -F, -Br, -I, -CF3, -OCH3, -SCH3, -SO2CH3 and -NHTs.  相似文献   

11.
Synthesis of the amines (R1RR')CNH2 (I) was carried out by the action of two organometallic compounds RM and R'M' on the α-oxygenated nitriles R1 CN. Aliphatic and unhindered organolithium or α-ethylenic organomagnesium compounds must be used in the second addition. The nature of the two metallic atoms of the aminate (R1RR')CN(MM'), precursor of the amine I, has an influence on the yield of this amine. If M = M' = Li an elimination reaction occurs and the amine I is obtained in low yields (2—34%). If M = Mg and M' = Li, the intermediate aminate is more stable, and the amine I is formed in good yields (48—75%). A mechanism explaining these results and the formation of by-products is proposed.  相似文献   

12.
The B(C6F5)3‐catalyzed silylative reduction of conjugated nitriles has been developed to afford synthetically valuable β‐silyl amines. The reaction is chemoselective and proceeds under mild conditions. Mechanistic elucidation indicates that it proceeds by rapid double hydrosilylation of the conjugated nitrile to an enamine intermediate which is subsequently reduced to the β‐silyl amine, thus forming a new C(sp3)? Si bond. Based on this mechanistic understanding, a preparative route to enamines was also established using bulky silanes.  相似文献   

13.
An efficient and economical protocol for the synthesis of 5-substituted-1H-tetrazoles from various nitriles and sodium azide is reported using nano TiO2/SO42− as an effective heterogeneous catalyst. A wide variety of aryl nitriles underwent [3 + 2] cycloaddition to afford tetrazoles in good to excellent yields.  相似文献   

14.
At room temperature, ZrOCl2·8H2O on montmorillonite K10 efficiently catalyzes conjugate addition of amines to a variety of conjugated alkenes such as α,β-unsaturated carbonyl compounds, carboxylic esters, nitriles and amides under solvent-free conditions. The catalyst can be recycled for subsequent reactions without any appreciable loss of efficiency.  相似文献   

15.
The formation of palladium(II) complexes with aliphatic amines and their oxidation by chloramine‐T in perchloric acid medium has been studied. The spectrophotometric studies showed the formation of 1:1 and 1:2 complexes between palladium(II) and amine in absence of HClO4. An increase in [HClO4] in reaction mixture suppresses the complex formation and in presence of [HClO4] ~10?3 mol dm?3 only a 1:1 complex between palladium(II) and amine has been observed. The effect of Cl? on the complex formation has also been studied. Palladium(II)‐catalyzed oxidation of these amines by chloramine‐T showed a first‐order dependence of rate with respect to each—oxidant, substrate, catalyst, and H+. The mechanism consistent with kinetic data for the oxidation process has been proposed in absence as well as in presence of initial [Cl?]. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 603–612, 2002  相似文献   

16.
The oxidative conversion of alcohols, aldehydes and amines to give corresponding nitriles in excellent yields was easily achieved by the catalytic amount of KI or I2 in combination with TBHP as an external oxidant. This non-transition metal catalyst is cost effective and provides easy work-up and separation of the product.  相似文献   

17.
The water‐soluble rhodium complex generated in situ from [Rh (COD)Cl]2 in aqueous ammonia has been revealed as a highly efficient catalyst for the hydrogenation of aromatic nitriles, to primary amines with excellent yields. The catalyst is also highly selective towards primary amines in the case of sterically hindered aliphatic nitriles. The catalytic system can also be recycled and re‐used with no significant loss of activity.  相似文献   

18.
A highly porous metal‐organic framework, MIL‐101(Fe), was prepared by a solvothermal method in the presence of amino‐modified Fe3O4@SiO2 nanoparticles, in order to achieve Fe3O4/MIL‐101(Fe) nanocomposite, which was characterized by XRD, FT‐IR, SEM, TEM, BET, and VSM. This hybrid magnetic nanocomposite was employed as heterogeneous catalyst for α‐amino nitriles synthesis through three‐component condensation reaction of aldehydes (ketones), amines, and trimethylsilyl cyanide in EtOH, at room temperature. The recoverability and reusability was admitted for the heterogeneous magnetic catalyst; no significant reduction of catalytic activity was observed even after five consecutive reaction cycles.  相似文献   

19.
The reactions of tetraalkyldialumoxanes (R2Al-O-AlR2)n or alkylalumoxane (AlOR)n with acetylacetone, some electron donors (ethers, amines, nitriles) and alcohols were discussed. The structures of alumoxanes were also considered. Despite a lot of studies the structure is not always clear and changes with a change of many parameters such as kind of ligands, synthetic conditions (solvents, reaction temperature, molar ratio of reactants), methods of isolation etc.  相似文献   

20.
SmI2 has been found to catalyze a reaction of cyclotrimerization of nitriles in the presence of amine as cocatalyst to give 2,4,6-trisubstituted-s-triazines effectively under mild reaction conditions. The yield depends on the structure of nitriles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号