首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fusion of two N‐annulated perylene (NP) units with a fused porphyrin dimer along the S0–S1 electronic transition moment axis has resulted in new near‐infrared (NIR) dyes 1 a / 1 b with very intense absorption (ε>1.3×105 M ?1 cm?1) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10?6 and 6.0×10?6 for 1 a and 1 b , respectively. The NP‐substituted porphyrin dimers 2 a / 2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited‐state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer‐like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two‐photon absorption cross‐sections in the NIR region due to extended π‐conjugation. Time‐dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.  相似文献   

2.
A molecular design to high-performance red and near-infrared (NIR) organic light-emitting diodes (OLEDs) emitters remains demanding. Herein a series of dinuclear platinum(II) complexes featuring strong intramolecular Pt???Pt and π–π interactions has been developed by using N-deprotonated α-carboline as a bridging ligand. The complexes in doped thin films exhibit efficient red to NIR emission from short-lived (τ=0.9–2.1 μs) triplet metal-metal-to-ligand charge transfer (3MMLCT) excited states. Red OLEDs demonstrate high maximum external quantum efficiencies (EQEs) of up to 23.3 % among the best PtII-complex-doped devices. The maximum EQE of 15.0 % and radiance of 285 W sr?1 m?2 for NIR OLEDs (λEL=725 nm) are unprecedented for devices based on discrete molecular emitters. Both red and NIR devices show very small efficiency roll-off at high brightness. Appealing operational lifetimes have also been revealed for the devices. This work sheds light on the potential of intramolecular metallophilicity for long-wavelength molecular emitters and electroluminescence.  相似文献   

3.
It is challenging to realize the near‐infrared (NIR) emission with large brightness and sharp spectra from the conjugated polymers. In this study, we demonstrate the strategy for receiving strong and pure NIR emission from polymeric materials using organoboron complexes and the modification after polymerization. A series of NIR emissive conjugated polymers with boron di(iso)indomethenes (BODINs) and fluorene or bithiophene were synthesized by Suzuki–Miyaura coupling reaction. The obtained polymers exhibited high emissions in the range from deep‐red to NIR region (quantum yields: ?PL = 0.40–0.79, full width at half maximum height: Δλ1/2 = 660–940 cm?1, emission maxima: λPL = 686–714 nm). Next, the demethylation of the BODIN‐based polymer with o‐methoxyphenyl groups was carried out. The transformation of the polymer structure quantitatively proceeded via efficient intramolecular crosslinking through the intermediary of the boron atom. Finally, the resulting polymer showed both drastically larger red‐shifted and sharper photoluminescence spectrum than that of the parent polymer with deep‐red emission (?PL = 0.37, Δλ1/2 = 460 cm?1, λPL = 758 nm). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
Small‐molecule organic fluorophores, spectrally active in the 900–1700 nm region, with tunable wavelength and sensing properties are sought‐after for in vivo optical imaging and biosensing. A panel of fluorescent dyes ( CX ) has been developed to meet this challenge. CX dyes exhibit the wavelength tunability of cyanine dyes and have a rigidified polymethine chain to guarantee their stability. They are chemo‐ and photo‐stable in an aqueous environment and have tunable optical properties with maximal absorbing/emitting wavelength at 1089/1140 nm. They show great potential in high‐contrast in vivo bioimaging and multicolor detection with negligible optical cross talk. Förster resonance energy transfer (FRET) between CX dyes was demonstrated in deep tissue, providing an approach for monitoring drug‐induced hepatotoxicity by detection of OONO?. This report presents a series of NIR‐II dyes with promising spectroscopic properties for high‐contrast bioimaging and multiplexed biosensing.  相似文献   

5.
Small‐molecule organic fluorophores, spectrally active in the 900–1700 nm region, with tunable wavelength and sensing properties are sought‐after for in vivo optical imaging and biosensing. A panel of fluorescent dyes ( CX ) has been developed to meet this challenge. CX dyes exhibit the wavelength tunability of cyanine dyes and have a rigidified polymethine chain to guarantee their stability. They are chemo‐ and photo‐stable in an aqueous environment and have tunable optical properties with maximal absorbing/emitting wavelength at 1089/1140 nm. They show great potential in high‐contrast in vivo bioimaging and multicolor detection with negligible optical cross talk. Förster resonance energy transfer (FRET) between CX dyes was demonstrated in deep tissue, providing an approach for monitoring drug‐induced hepatotoxicity by detection of OONO?. This report presents a series of NIR‐II dyes with promising spectroscopic properties for high‐contrast bioimaging and multiplexed biosensing.  相似文献   

6.
Despite the success of thermally activated delayed fluorescent (TADF) materials in steering the next generation of organic light‐emitting diodes (OLEDs), effective near infrared (NIR) TADF emitters are still very rare. Here, we present a simple and extremely high electron‐deficient compound, 5,6‐dicyano[2,1,3]benzothiadiazole (CNBz), as a strong electron‐accepting unit to develop a sufficiently strong donor‐acceptor (D?A) interaction for NIR emission. End‐capping with the electron‐donating triphenylamine (TPA) unit created an effective D?A?D type system, giving rise to an efficient NIR TADF emissive molecule (λem=750 nm) with a very small ΔEST of 0.06 eV. The electroluminescent device using this NIR TADF emitter exhibited an excellent performance with a high maximum radiance of 10020 mW Sr?1 m?2, a maximum EQE of 6.57% and a peak wavelength of 712 nm.  相似文献   

7.
Six novel Ir(C^N)2(L^X)-type heteroleptic iridium complexes with deep-red and near-infrared region (NIR)-emitting coverage were constructed through the cross matching of various cyclometalating (C^N) and ancillary (LX) ligands. Here, three novel C^N ligands were designed by introducing the electron-withdrawing group CF3 on the ortho (o-), meta (m-), and para (p-) positions of the phenyl ring in the 1-phenylisoquinoline (piq) group, which were combined with two electron-rich LX ligands (dipba and dipg), respectively, leading to subsequent iridium complexes with gradually changing emission colors from deep red (≈660 nm) to NIR (≈700 nm). Moreover, a series of phosphorescent organic light-emitting diodes (PhOLEDs) were fabricated by employing these phosphors as dopant emitters with two doping concentrations, 5% and 10%, respectively. They exhibited efficient electroluminescence (EL) with significantly high EQE values: >15.0% for deep red light0 (λmax = 664 nm) and >4.0% for NIR cases (λmax = 704 nm) at a high luminance level of 100 cd m−2. This work not only provides a promising approach for finely tuning the emission color of red phosphors via the easily accessible molecular design strategy, but also enables the establishment of an effective method for enriching phosphorescent-emitting molecules for practical applications, especially in the deep-red and near-infrared region (NIR).  相似文献   

8.
This article describes a series of nine complexes of boron difluoride with 2′‐hydroxychacone derivatives. These dyes were synthesized very simply and exhibited intense NIR emission in the solid state. Complexation with boron was shown to impart very strong donor–acceptor character into the excited state of these dyes, which further shifted their emission towards the NIR region (up to 855 nm for dye 5 b , which contained the strongly donating triphenylamine group). Strikingly, these optical features were obtained for crystalline solids, which are characterized by high molecular order and tight packing, two features that are conventionally believed to be detrimental to luminescence in organic crystals. Remarkably, the emission of light from the π‐stacked molecules did not occur at the expense of the emission quantum yield. Indeed, in the case of pyrene‐containing dye 4 , for example, a fluorescence quantum yield of about 15 % with a fluorescence emission maximum at 755 nm were obtained in the solid state. Moreover, dye 3 a and acetonaphthone‐based compounds 1 b , 2 b , and 3 b showed no evidence of degradation as solutions in CH2Cl2 that contained EtOH. In particular, solutions of brightly fluorescent compound 3 a (brightness: ε×Φf=45 000 M ?1 cm?1) could be stored for long periods without any detectable changes in its optical properties. All together, these new dyes possess a set of very interesting properties that make them promising solid‐state NIR fluorophores for applications in materials science.  相似文献   

9.
A series of fused‐ring‐expanded aza‐boradiazaindacene (aza‐BODIPY) dyes have been synthesized by reacting arylmagnesium bromides with phthalonitriles or naphthalenedicarbonitriles. An analysis of the structure–property relationships has been carried out based on X‐ray crystallography, optical spectroscopy, and theoretical calculations. Benzo and 1,2‐naphtho‐fused 3,5‐diaryl aza‐BODIPY dyes display markedly red shifted absorption and emission bands in the near‐IR region (>700 nm) due to changes in the energies of the frontier MOs relative to those of 1,3,5,7‐tetraaryl aza‐BODIPYs. Only one 1,2‐naphtho‐fused aza‐BODIPY of the three possible isomers is formed due to steric effects, and 2,3‐naphtho‐fused compounds could not be characterized because the final BF2 complexes are unstable in solution. The incorporation of a  N(CH3)2 group at the para‐positions of a benzo‐fused 3,5‐diaryl aza‐BODIPY quenches the fluorescence in polar solvents and results in a ratiometric pH response, which could be used in future practical applications as an NIR “turn‐on” fluorescence sensor.  相似文献   

10.
Nanosized magnetic Fe3O4 synthesized via sonochemical route was used as a photocatalyst for the degradation of azo dyes, methyl red and congo red. The novelty of the photo catalyst is its easy recovery by magnetic force and its recycling ability due to its long-term stability, in addition to its cost effectiveness, non-toxicity and non-carcinogenicity. A detailed feasibility study has been carried out on the photocatalytic degradation of the azo dyes at various pH and at various concentrations of photocatalyst, dye and H2O2. The presence of photocatalyst is found to significantly accelerate the degradation of azo dyes and the optimal dosage is found to be 0.075 and 0.2?g/l for methyl red and congo red, respectively. Langmuir?CHinshelwood kinetic analysis revealed pseudo-first-order kinetics for the photocatalytic degradation of the dyes and the degradation products were identified using spectral analysis. The degradation study revealed the following order of reactivity: Photo-Fe3O4?>?Photo-H2O2?>?Fe3O4?>?H2O2.  相似文献   

11.
A new fluorescent hybrid porous polymer (HPP) is synthesized by an anhydrous FeCl3‐mediated oxidative coupling reaction of octa[4‐(9‐carbazolyl)phenyl]silsesquioxane (OCPS). The polymer possesses a surface area of 1741 m2 g?1 and hierarchical bimodal micropores (1.41 and 1.69 nm) and mesopores (2.65 nm). The material serves as an excellent adsorbent for CO2 and dyes with high adsorption capacity for CO2 (8.53 wt %,1.94 mmol g?1), congo red (1715 mg g?1) and rhodamine B (1501 mg g?1). In addition, the presence of peripheral cabozolyl groups with extended π‐conjugation in the crosslinked framework imparts luminescent character to the polymer and offers the detection of nitroaromatic compounds.  相似文献   

12.
Cationic triangulenes, and related helicenes, constitute a rich class of dyes and fluorophores, usually absorbing and emitting light at low energy, in the orange to red domains. Recently, to broaden the scope of applications, regioselective late-stage functionalizations on these core moieties have been developed. For instance, with the introduction of electron-donating groups (EDGs), important bathochromic shifts are observed pushing absorptions towards or in the near-infrared (NIR) spectral domain while emissive properties disappear essentially completely. Herein, to upset this drawback, acetylene derivatives of cationic diazaoxa triangulenes (DAOTA) and [4]helicenes are prepared (16 examples). Contrary to other EDG-functionalized derivatives, C≡C− functionalized products remain broadly fluorescent, with red-shifted absorptions (Δλabs up to 25 nm) and emissions (Δλem up to 73 nm, ΦPL up to 51 %). Quite interestingly, a general dynamic stereoisomerism phenomenon is evidenced for the compounds derived from achiral DAOTA cores. At low temperature in 1H NMR spectroscopy (218 K), N−CH2 protons become diastereotopic with chemical shifts differences (Δδ) as high as +1.64 ppm. The signal coalescence occurs around 273 K with a barrier of ∼12 kcal mol−1. This phenomenon is due to planar chiral conformations (Sp and Rp configurations), induced by the geometry of the alkyl (n-propyl) side-chains next to the acetylenic substituents. Ion pairing studies with Δ-TRISPHAT anion not only confirm the occurrence of the chiral conformations but evidence a moderate but definite asymmetric induction from the chiral anion onto the cations. Finally, DFT calculations offer a valuable insight on the geometries, the corresponding stereodynamics and also on the very large difference in NMR for some of the diastereotopic protons.  相似文献   

13.
A new series of high-performance fluorophores named Keio Fluors (KFL), which are based on borondipyrromethene (BODIPY), are reported. The KFL dyes cover a wide spectral range from the yellow (547 nm) to the near-infrared (NIR, 738 nm) region, and their emission wavelength could be easily and subtly controlled based on simple molecular modifications only, without losing their optical properties. This “tailor-made” synthetic strategy for tuning the emission wavelength enabled the creation of fourteen KFL dyes with well-controlled emission colors (yellow, orange, red, far-red, and NIR). Moreover, these KFL dyes also retain their excellent optical properties, such as spectral bands sharper than quantum dots, high extinction coefficients (140 000–316 000 M −1 cm−1), and high quantum yields (0.56–0.98), without any critical solvent polarity dependent decrease of their brightness. These advantageous characteristics make the KFL dyes potentially useful as new candidates of fluorescent standard dyes to substitute or to complement existing long-wavelength fluorescent dyes, such as cyanines, oxazines, rhodamines, or other BODIPY dyes.  相似文献   

14.
The diruthenium(III) compound [(μ‐oxa){Ru(acac)2}2] [ 1 , oxa2?=oxamidato(2?), acac?=2,4‐pentanedionato] exhibits an S=1 ground state with antiferromagnetic spin‐spin coupling (J=?40 cm?1). The molecular structure in the crystal of 1? 2 C7H8 revealed an intramolecular metal–metal distance of 5.433 Å and a notable asymmetry within the bridging ligand. Cyclic voltammetry and spectroelectrochemistry (EPR, UV/Vis/NIR) of the two‐step reduction and of the two‐step oxidation (irreversible second step) produced monocation and monoanion intermediates (Kc=105.9) with broad NIR absorption bands (ε ca. 2000 M ?1 cm?1) and maxima at 1800 ( 1 ?) and 1500 nm ( 1 +). TD‐DFT calculations support a RuIIIRuII formulation for 1 ? with a doublet ground state. The 1 + ion (RuIVRuIII) was calculated with an S=3/2 ground state and the doublet state higher in energy (ΔE=694.6 cm?1). The Mulliken spin density calculations showed little participation of the ligand bridge in the spin accommodation for all paramagnetic species [(μ‐oxa){Ru(acac)2}2]n, n=+1, 0, ?1, and, accordingly, the NIR absorptions were identified as metal‐to‐metal (intervalence) charge transfers. Whereas only one such NIR band was observed for the RuIIIRuII (4d5/4d6) system 1 ?, the RuIVRuIII (4d4/4d5) form 1 + exhibited extended absorbance over the UV/Vis/NIR range.  相似文献   

15.
Abstract

Since conventional sensitive explosives have given rise to unforeseen accidents during storage and transport, the demand of modern armies for insensitive energetic materials is on the rise. There are very few determination methods for the most widely used insensitive energetic materials such as 3-nitro-1,2,4-triazole-5-one (NTO). Thus, the aim of this work is the development of a rapid and practical nanoparticle-based colorimetric sensor for determination of NTO. The detection principle of the sensor involved electrostatic attraction of NTO anion to the ammonium group of l-cysteine functionalized gold nanoparticles (AuNP-Cys), followed by the formation of a Cu2+-coordination complex between particles to result in AuNPs agglomeration. The concomitant color change was from red to violet. The surface plasmon resonance band of AuNPs at 520?nm shifted to 650?nm upon chemical reaction and agglomeration. Spectroscopic evaluation was made by taking the ratio of 650?nm absorbance to that of 520?nm, and correlating this ratio to NTO concentration. The analytical performance characteristics of this ratiometric sensor for NTO as the molar absorptivity (ε); limits of detection (LOD) and quantification (LOQ) were: ε = (8.62?±?0.29) × 103 L mol?1 cm?1, LOD = 0.25?mg L?1, and LOQ = 0.85?mg L?1. The sensor was applied to various energetic material mixtures containing 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, and tetryl. Additionally, the possible interference effects of commonly found soil ions such as Cl, NO3, SO42–, PO43–, Mg2+, Ca2+, Na+, and K+ were studied. The proposed method was statistically validated against a literature liquid chromatography–tandem mass spectrometry (LC/MS-MS) method.  相似文献   

16.
Structurally unique π‐expanded diketopyrrolopyrroles (EDPP) were designed and synthesized. Strategic placement of a fluorene scaffold at the periphery of a diketopyrrolopyrrole through tandem Friedel–Crafts‐dehydration reactions resulted in dyes with supreme solubility. The structure of the dyes was confirmed by X‐ray crystallography verifying a nearly flattened arrangement of the ten fused rings. Despite the extended ring system, the dye still preserved good solubility and was further functionalized by using Pd‐catalyzed coupling reactions, such as the Buchwald–Hartwig amination. Photophysical studies of these new functional dyes revealed that they possess enhanced properties when compared with expanded DPPs in terms of two‐photon absorption cross‐section. It is further demonstrated that in addition to the initial diacetals, the final electrophilic cyclization step can also be applied to diketones. By placing two amine groups at peripheral positions of the resulting dyes, values of two‐photon absorption cross‐section on the level of 2000 GM around 1000 nm were achieved, which in combination with high fluorescence quantum yield (Φfl), generated a two‐photon brightness of approximately 1600 GM. These characteristics in combination with strong red emission (665 nm) make these new π‐expanded diketopyrrolopyrroles of major promise as two‐photon dyes for bioimaging applications. Finally, the corresponding N‐alkylated DPPs displayed a solid‐state fluorescence.  相似文献   

17.
The photochemistry of dye is playing a significant role for understanding the mechanism of electron transfer reactions in photoelectrochemical devices such as photogalvanic cells, DSSC, semiconductor photo-catalysis, photoconductors, etc. Oxazines (Brilliant Cresyl Blue and Nile Blue O) and thiazines (Azur A, Azur B, Azur C, Methylene Blue and Toluidine Blue O) dyes have been used widely as a photosensitizer with and without surfactants in the photogalvanic cells for solar power conversion and storage. Since, the stability and solubility of photosensitizers (dyes) are increased in the presence of surfactant and these properties lead to enhance the electrical output of the photogalvanic cells. Therefore, here we have studied the extent of interaction of different dyes with sodium dodecyl sulphate (SDS), find out the order of stability of dye–SDS on the basis of magnitudes of shifting in λmax of dye monomer and try to correlate order of dye–SDS interaction with already reported electrical output data of photogalvanic cells. Brilliant Cresyl Blue, Nile Blue O, Azur A and TB O have shown red shifting while Azur B, Azur C and MB have shown blue shifting in their λmax value with SDS, which indicates formation of dye–surfactant complex. But, the extent of formation of complex for different dyes with SDS was different due to change in their alkyl groups. Dyes with red shifting have greater stability in excited state as well as higher electrical output data of the cell than dye with blue shifting. On the basis of both red and blue shifting, order of stability of dyes–SDS complex was found as: Brilliant Cresyl Blue?>?Toluidine Blue O?>?Azur A?>?Nile Blue?>?Azur B?>?Methylene Blue?>?Azur C. The order of electrical output values of these dyes in photogalvanic cells have also been supported by literature data in the presence of SDS. Hence, the dye–surfactant complex which would have greater stability in excited state might be more useful for improvement of conversion efficiency and storage capacity of photogalvanic cells in the future.  相似文献   

18.
2,2′-Dihydroxybenzophenone thiosemicarbazone forms complexes with Cu(II) (λmax = 385 nm, ? = 8.60 × 103 liter · mol?1 · cm?1); Ni(II) (λmax = 380 nm, ? = 15.4 × 103 liter · mol?1 · cm?1); Co(II) (λmax = 380 nm, ? = 12.3 × 103 liter · mol? · cm?1); and Fe(III) (λmax = 365 nm, ? = 7.9 × 103 liter · mol?1 · cm?1) and have been applied to the analysis of these metal ions in binary, ternary, and quaternary mixtures. The determination procedures are based exclusively on the different pH values of the formation complexes, hence the extraction step is not necessary.  相似文献   

19.
20.
A boron difluoride formazanate dye that exhibits near‐infrared photoluminescence and electrochemiluminescence was produced via a straightforward two‐step synthesis. Examination of its solid‐state structure suggested that the N‐aryl substituents have significant quinoidal character, which narrows the S1–S0 energy gap and leads to the unique optoelectronic properties observed. Cyclic voltammetry studies revealed two oxidation waves and two reduction waves that were electrochemically reversible. Electrochemiluminescence properties were examined in the presence of tri‐n‐propylamine, leading to maximum intensity at 910 nm, at least 85 nm (1132 cm?1) red‐shifted compared to all other organic dyes. This work sets the stage for the development of future generations of dyes for emerging applications, including single‐cell imaging, that require near‐infrared photoluminescence and electrochemiluminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号