首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preliminary stage of the formation of carbon nanotubes by the vapor-liquid-drop mechanism is considered as applied to the condensation of drops from carbon and metal vapors. The problem of the condensation of molten drops is solved for a wide concentration range for both vapors at a condensation temperature. It is shown that, at very high concentrations of the metal vapor (1018–1019 cm−3) and high temperatures (about 0.3 eV), peculiar heterogeneous condensation of the drops can occur at huge supersaturation of the carbon vapor and the saturated metal vapor. This problem of the condensation of the binary vapor is of methodical interest. This condensation is shown to be unrealizable in real experiment at the parameters of the carbon and metal vapors; it virtually merges with the homogeneous condensation of the metal vapor. The maximum concentration of the carbon vapor below which carbon condenses into drops and above which carbon condenses into amorphous soot particles is calculated. The calculation makes it possible to propose a new approach to the controlled growth of carbon nanotubes.  相似文献   

2.
This work examines the recent developments in non-traditional catalyst-assisted chemical vapour deposition of carbon nanotubes (CNTs) with a view to determining the essential role of the catalyst in nanotube growth. A brief overview of the techniques reliant on the structural reorganization of carbon to form CNTs is provided. Additionally, CNT synthesis methods based upon ceramic, noble metal, and semiconducting nanoparticle catalysts are presented. Experimental evidence is provided for CNT growth using noble metal and semiconducting nanoparticle catalysts. A model for CNT growth consistent with the experimental results is proposed, in which the structural reorganization of carbon to form CNTs is paramount.  相似文献   

3.
Quantum-chemical methods are used to analyze the mechanism of carbon nanotube formation in the electrochemical bath, where tiny fragments of graphene planes are in the environment of atoms and ions of alkali metals and halogens. In the optimal configuration, alkali metal atoms move toward the edge of a graphene fragment, whereas halogen atoms remain at the sites of their initial attachment. When the graphene fragments “burdened” by alkali metal and halogen atoms interact with each other, the overall graphene configuration twists in a natural way into a nanotube-like open-end structure.  相似文献   

4.
利用Gaussian03程序计算出C-H键的键能是1.88 eV,键长是0.113 nm.已知H-H键能是4.748 eV,键长是0.074 nm.显然,H-H键能大于C-H键的键能,所以在常温常压下碳纳米管储氢时,以物理吸附H_2分子为主,化学形式的C-H键吸附为辅.另外,利用LJ势能函数,计算了H_2分子在碳纳米管中C原子所成的六边形中心正上方、C原子正上方以及相邻两C原子中间正上方时H_2分子与碳纳米管之间的势能.得到无论H_2分子是被吸附到管内或管外,还是被吸附到中间区域或两端区域,都是H_2分子在C原子所成的六边形中心正上方时能量最低.当H_2分子被吸附到碳纳米管中间区域时,管内和管外的H_2分子距管壁的距离分别是0.320 nm和0.309 nm;而当H_2分子被吸附到碳纳米管两端区域时,这两个距离分别是0.324 nm和0.313 nm.  相似文献   

5.
摘要 利用Gaussian03程序计算出C-H键的键能是1.88eV,键长是0.113nm。已知H-H键能是4.748eV,键长是0.074nm。显然, H-H键能大于C-H键的键能,所以在常温常压下碳纳米管储氢时,以物理吸附H2分子为主,化学形式的C-H键吸附为辅。另外,利用LJ势能函数,计算了H2分子在碳纳米管中C原子所成的六边形中心正上方、C原子正上方以及相邻两C原子中间正上方时H2分子与碳纳米管之间的势能。得到无论管内、管外或者两端,都是H2分子在C原子所成的六边形中心正上方时能量最低。且在管内时H2分子距离管壁的距离是0.320nm,在管外时距离管壁的距离是0.309nm;在两端的管内时距离管壁的距离是0.324nm,在两端的管外时距离管壁的距离是0.313nm。  相似文献   

6.
7.
The properties of terahertz (THz) radiation pulses emitted by a metallic, large aspect ratio carbon nanotube antenna have been studied both in the THz waveforms and field distribution. The peak THz field up to 2.66 and 1.26 kV/cm are observed at the probe points. The proposed antenna is designed to operate for dual frequency applications from 2.36 to 2.58 THz and from 7.27 to 7.5 THz for less than -10 dB return loss.  相似文献   

8.
In this paper a general framework for discussing the classical statements of the second law of thermodynamics is developed. The thermodynamic systems with which the theory deals need not obey the first law and can undergo general (not necessarily quasi-static) processes. By using the formalism of heat distribution measures introduced in previous papers of the author, the classical verbal statements are converted into meaningful mathematical conditions. These conditions can be put into a general form which is the same for all the classical statements. The main result of the paper is an abstract theorem which shows that the general condition leads to one or two inequalities for cyclic processes. In the subsequent part of the paper the abstract theorem is applied to the specific conditions corresponding to the classical statements of the second law. The number of the corresponding inequalities depends on the condition in question, but in each case these inequalities are generalization of the Clausius inequality to which they reduce if the first law holds. By comparing the inequalities corresponding to various statements of the second law also the relations among the statements are established in the second part of the paper.I wish to thank Dr. Jan Kratochvil, DrSc for a number of helpful suggestions concerning a previous draft of the paper.  相似文献   

9.
Multi-wall carbon nanotubes (MWCNTs) were synthesized by catalytic chemical vapor deposition (CVD) on catalytic iron nanoparticles dispersed in a silica matrix, prepared by sol gel method. In this contribution, variation of gelation condition on catalyst structure and its influence on the yield of carbon nanotubes growth was studied. The precursor utilized were tetraethyl-orthosilicate and iron nitrate. The sols were dried at two different temperatures in air (25 or 80 °C) and then treated at 450 °C for 10 h. The xerogels were introduced into the chamber and reduced in a hydrogen/nitrogen (10%v/v) atmosphere at 600 °C. MWCNTs were formed by deposition of carbon atoms from decomposition of acetylene at 700 °C. The system gelled at RT shows a yield of 100% respect to initial catalyst mass whereas the yield of that gelled at 80 °C was lower than 10%. Different crystalline phases are observed for both catalysts in each step of the process. Moreover, TPR analysis shows that iron oxide can be efficiently reduced to metallic iron only in the system gelled at room temperature. Carbon nanotubes display a diameter of about 25–40 nm and several micron lengths. The growth mechanism of MWCNTs is base growth mode for both catalysts.  相似文献   

10.
A quantum-mechanical simulation is carried out to investigate the charge distribution and electrostatic potential along a 1 microm long (5,5) single-walled carbon nanotube under realistic field-emission experimental conditions. A single layer of carbon atoms is found sufficient to shield most of the electric field except at the tip where strong field penetration occurs. The penetration leads to a nonlinear decrease of potential barrier for emission, which is equally responsible for the low threshold voltage besides the well-known geometrical field enhancement factor.  相似文献   

11.
S.R. de Groot 《Physica A》1977,88(1):172-182
The physical quantities which occur in the laws of relativistic thermodynamics are defined as statistical expressions of relativistic kinetic theory. The role of the hydrodynamic velocity field is discussed.  相似文献   

12.
The nonlinear bulk compressibility of entangled multiwalled carbon nanotubes is studied. The analogy with textile fibre assemblies is explored by means of the well established van Wyk model. In view of the small diameter of the nanotubes, the possible effect of adhesive van der Waals interactions at tube-tube contacts is analysed. It is found, however, that the contribution of adhesive contacts to the bulk stress should be negligible. Compression experiments are performed on multi-walled carbon nanotubes and show that van Wyk's model is able to describe the response, although the values of the dimensionless parameter k of van Wyk's model were lower than expected. There is indeed no indication that van der Waals interactions play any significant role.  相似文献   

13.
An optimized strategy was developed for fast growth of millimeter-long CNT arrays using chemical vapor deposition (CVD). Growth temperature of 800 °C was firstly determined, and catalyst heat treatment conditions were then optimized to probe the full potential of growth rate. 1.5 mm long CNT arrays were obtained in 10 min under optimized growth and catalyst heat treatment conditions. The growth rate of CNT arrays strongly depends on the growth temperature and catalyst heat treatment. Insufficient reduction could not reduce iron oxide into metallic state or/and crack down catalyst film into particles, but excessive treatment may result in large particles due to Ostwald ripening process. This method would offer more freedoms in designing the fast growth of high-purity, long CNT arrays.  相似文献   

14.
Carbon nanotube (CNT)/europium hydroxide core-shell nanowires were prepared easily on a large scale under the boiling reflux of water assisted by the surfactant, sodium polystyrenesulfonate (SPS). The core-shell nanowires are characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectrum. A possible formation mechanism has been suggested as follows: The phenyl rings of SPS can react with the carbon ring of CNTs to form the π-π noncovalent bond, which makes the SPS cover the surface of CNTs entirely, and thus the surface of modified CNTs is negatively charged, which repel with each other resulting in the good dispersion. In addition, the negatively charged surface of CNTs adsorbs europium ions (positive). The adsorbed europium ions in situ react with OH ions to create europium hydroxide nanoparticles, and subsequently, the nanoparticles fuse together to form a dense coating layer on CNTs.  相似文献   

15.
Catalyst films undergo considerable surface morphology restructuring prior to carbon nanotube nucleation, deeply influencing the nanostructures obtained. Here we study the influence of different gaseous atmospheres on the structure of thin Fe films. The morphology is influenced by process temperature and substrate interactions and varying the gas type and pressure can control the average catalyst island height.  相似文献   

16.
17.
The well-known problem of the phase transition in a two-level system coupled with the radiation field of a resonator is considered subject to the conduction electrons of the resonator walls. It is shown that the conduction electrons are important for consideration of the high-frequency properties of the system to cut off the frequency spectrum of the radiation field at the plasma frequency. In the vicinity of the phase transition the conduction electrons lead to the damping of the soft mode.  相似文献   

18.
非晶合金的塑性变形机理一直是材料科学和凝聚态物理研究的热点问题之一.文章简单介绍了近来中国科学院物理研究所在非晶合金塑性机理研究方面的最新进展,介绍了玻璃转变和塑性变形机制之间的关联性及最新的实验证据,以及从非平衡态统计力学角度对非晶塑性变形机制的理解,指出非晶合金的塑性和剪切带的动力学状态密切相关,发现韧性非晶合金在变形过程中可以演化到自组织临界状态.这对认识非晶合金的形成本质,探索具有实际应用价值的非晶合金具有重要意义.  相似文献   

19.
孙保安  汪卫华 《物理》2010,39(09):628-630
非晶合金的塑性变形机理一直是材料科学和凝聚态物理研究的热点问题之一.文章简单介绍了近来中国科学院物理研究所在非晶合金塑性机理研究方面的最新进展,介绍了玻璃转变和塑性变形机制之间的关联性及最新的实验证据,以及从非平衡态统计力学角度对非晶塑性变形机制的理解,指出非晶合金的塑性和剪切带的动力学状态密切相关,发现韧性非晶合金在变形过程中可以演化到自组织临界状态.这对认识非晶合金的形成本质,探索具有实际应用价值的非晶合金具有重要意义.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号