首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a method for the preparation of colloidal ZnO-diluted magnetic semiconductor quantum dots (DMS-QDs) by alkaline-activated hydrolysis and condensation of zinc acetate solutions in dimethyl sulfoxide (DMSO). Mechanistic studies reveal that Co(2+) and Ni(2+) dopants inhibit nucleation and growth of ZnO nanocrystals. In particular, dopants are quantitatively excluded from the critical nuclei but are incorporated nearly isotropically during subsequent growth of the nanocrystals. The smaller nanocrystal diameters that result upon doping are explained by the Gibbs-Thompson relationship between lattice strain and crystal solubility. We describe methods for cleaning the nanocrystal surfaces of exposed dopants and for redispersion of the final DMS-QDs. Homogeneous substitutional doping is verified by high-resolution low-temperature electronic absorption and magnetic circular dichroism (MCD) spectroscopies. A "giant Zeeman effect" is observed in the band gap transition of Co(2+):ZnO DMS-QDs. MCD and Zeeman spectroscopies are used to quantify the magnitude of the p-d exchange interaction (N(0)beta) that gives rise to this effect. N(0)beta values of -2.3 +/- 0.3 eV (-18 500 cm(-1)) for Co(2+):ZnO and -4.5 +/- 0.6 eV (-36 300 cm(-1)) for Ni(2+):ZnO have been determined. Ligand-to-metal charge-transfer transitions are observed in the MCD spectra of both Co(2+):ZnO and Ni(2+):ZnO DMS-QDs and are analyzed in the context of an optical electronegativity model. The importance of these charge-transfer states in determining N(0)beta is discussed. Ferromagnetism with T(C) > 350 K is observed in aggregated nanocrystals of Co(2+):ZnO that unambiguously demonstrates the existence of intrinsic high-T(C) ferromagnetism in this class of DMSs.  相似文献   

2.
Methods for introducing new magnetic, optical, electronic, photophysical, or photochemical properties to semiconductor nanocrystals are attracting intense applications-oriented interest. In this communication, we report the preparation and electronic absorption spectroscopy of colloidal ZnO DMS-QDs. Our synthetic procedure involves modification of literature methods known to yield highly crystalline and relatively monodisperse nanocrystals of pure ZnO to allow introduction of transition-metal dopants. We use ligand-field electronic absorption spectroscopy as a dopant-specific optical probe to monitor dopant incorporation during nanocrystal growth and to verify internal substitutional doping in Co2+:ZnO and Ni2+:ZnO DMS-QDs. To the best of our knowledge, these are the first free-standing oxide DMS-QDs reported. The synthesis of colloidal oxide DMS-QDs introduces a new category of magnetic semiconductor materials available for detailed physical study and application in nanotechnology.  相似文献   

3.
This paper reports the application of ligand-field electronic absorption spectroscopy to probe Co(2+) dopant ions in diluted magnetic semiconductor quantum dots. It is found that standard inverted micelle coprecipitation methods for preparing Co(2+)-doped CdS (Co(2+):CdS) quantum dots yield dopant ions predominantly bound to the nanocrystal surfaces. These Co(2+):CdS nanocrystals are unstable with respect to solvation of surface-bound Co(2+), and time-dependent absorption measurements allow identification of two transient surface-bound intermediates involving solvent-cobalt coordination. Comparison with Co(2+):ZnS quantum dots prepared by the same methods, which show nearly isotropic dopant distribution, indicates that the large mismatch between the ionic radii of Co(2+) (0.74 A) and Cd(2+) (0.97 A) is responsible for exclusion of Co(2+) ions during CdS nanocrystal growth. An isocrystalline core/shell preparative method is developed that allows synthesis of internally doped Co(2+):CdS quantum dots through encapsulation of surface-bound ions beneath additional layers of CdS.  相似文献   

4.
Co(2+)cobalmain (Co(2+)Cbl) is implicated in the catalytic cycles of all adenosylcobalamin (AdoCbl)-dependent enzymes, as in each case catalysis is initiated through homolytic cleavage of the cofactor's Co-C bond. The rate of Co-C bond homolysis, while slow for the free cofactor, is accelerated by 12 orders of magnitude when AdoCbl is bound to the protein active site, possibly through enzyme-mediated stabilization of the post-homolysis products. As an essential step toward the elucidation of the mechanism of enzymatic Co-C bond activation, we employed electronic absorption (Abs), magnetic circular dichroism (MCD), and resonance Raman spectroscopies to characterize the electronic excited states of Co(2+)Cbl and Co(2+)cobinamide (Co(2+)Cbi(+), a cobalamin derivative that lacks the nucleotide loop and 5,6-dimethylbenzimazole (DMB) base and instead binds a water molecule in the lower axial position). Although relatively modest differences exist between the Abs spectra of these two Co(2+)corrinoid species, MCD data reveal that substitution of the lower axial ligand gives rise to dramatic changes in the low-energy region where Co(2+)-centered ligand field transitions are expected to occur. Our quantitative analysis of these spectral changes within the framework of time-dependent density functional theory (TD-DFT) calculations indicates that corrin-based pi --> pi transitions, which dominate the Co(2+)corrinoid Abs spectra, are essentially insulated from perturbations of the lower ligand environment. Contrastingly, the Co(2+)-centered ligand field transitions, which are observed here for the first time using MCD spectroscopy, are extremely sensitive to alterations in the Co(2+) ligand environment and thus may serve as excellent reporters of enzyme-induced perturbations of the Co(2+) state. The power of this combined spectroscopic/computational methodology for studying Co(2+)corrinoid/enzyme active site interactions is demonstrated by the dramatic changes in the MCD spectrum as Co(2+)Cbi(+) binds to the adenosyltransferase CobA.  相似文献   

5.
Methylmalonyl-CoA mutase (MMCM) is an enzyme that utilizes the adenosylcobalamin (AdoCbl) cofactor to catalyze the rearrangement of methylmalonyl-CoA to succinyl-CoA. Despite many years of dedicated research, the mechanism by which MMCM and related AdoCbl-dependent enzymes accelerate the rate for homolytic cleavage of the cofactor's Co-C bond by approximately 12 orders of magnitude while avoiding potentially harmful side reactions remains one of the greatest subjects of debate among B(12) researchers. In this study, we have employed electronic absorption (Abs) and magnetic circular dichroism (MCD) spectroscopic techniques to probe cofactor/enzyme active site interactions in the Co(3+)Cbl "ground" state for MMCM reconstituted with both the native cofactor AdoCbl and its derivative methylcobalamin (MeCbl). In both cases, Abs and MCD spectra of the free and enzyme-bound cofactor are very similar, indicating that replacement of the intramolecular base 5,6-dimethylbenzimidazole (DMB) by a histidine residue from the enzyme active site has insignificant effects on the cofactor's electronic properties. Likewise, spectral perturbations associated with substrate (analogue) binding to holo-MMCM are minor, arguing against substrate-induced enzymatic Co-C bond activation. As compared to the AdoCbl data, however, Abs and MCD spectral changes for the sterically less constrained MeCbl cofactor upon binding to MMCM and treatment of holoenzyme with substrate (analogues) are much more substantial. Analysis of these changes within the framework of time-dependent density functional theory calculations provides uniquely detailed insight into the structural distortions imposed on the cofactor as the enzyme progresses through the reaction cycle. Together, our results indicate that, although the enzyme may serve to activate the cofactor in its Co(3+)Cbl ground state to a small degree, the dominant contribution to the enzymatic Co-C bond activation presumably comes through stabilization of the Co(2+)Cbl/Ado. post-homolysis products.  相似文献   

6.
The large structural tolerance of I–III–VI group quantum dots (QDs) to off-stoichiometry allows their photoluminescence properties to be adjusted via doping, thereby enabling application in different fields. However, the photophysical processes underlying their photoluminescence mechanism remain significantly unknown. In particular, the transition channels of CuInSe2 QDs, which are altered by intrinsic and extrinsic intragap states, remain poorly reported. Herein, we investigated the photophysical processes associated with intragap states via electrochemical and optical techniques by using copper deficient Cu−In−Se QDs as well as Zn doped Cu−In−Se QDs. When the Cu/In molar ratios of Cu−In−Se QDs increased from 0.3 : 1 to 0.9 : 1, the photoluminescence spectra displayed a red-shift from 700 nm to 1050 nm. Although there was a blue-shift after the introduction of Zn2+ dopants in Cu−In−Se QDs, a significant red-shift occurred (from 660 nm to 760 nm) when the Zn/Cu molar ratios decreased from 0.7 : 0.3 to 0.3 : 0.7. The Gaussian deconvolution results of the photoluminescence spectra and the band gap derived from absorption spectra by fitting supported the fact that the optical transition channels are dependent on the Cu/In and Zn/Cu molar ratios. After the introduction of the Zn2+ ions, the alloyed-resultant blue-shift of the emission spectra was observed, primarily due to the enlarged band gap; however, the radiative recombination of prominent intrinsic intragap states is still observed; and only a small proportion of the band-edge exciton undergoes recombination for the sample with low Zn content. Cyclic voltammetry measurements revealed well-defined extrinsic ZnCu intragap states (Zn substitution on Cu sites) and intrinsic Cux (x= 1+/2+) states in the band gap. The results presented here provide a better understanding of the varying effects of dopant on photoluminescence in terms of I–III–VI group QDs.  相似文献   

7.
Equilibrium dialysis of methionyl aminopeptidase from Escherichia coli (EcMetAP) monitored by atomic absorption spectrometry and magnetic circular dichroism (MCD) shows that the enzyme binds up to 1.1 +/- 0.1 equiv of Co(2+) in the metal concentration range likely to be found in vivo. The dissociation constant, K(d), is estimated to be between 2.5 and 4.0 microM. Analysis of the temperature and magnetization behavior of the two major peaks in the MCD spectrum at 495 and 567 nm suggests that these transitions arise from Co(2+) with different ground states. Ligand field calculations using AOMX are used to assign the 495 nm peak to Co(2+) in the 6-coordinate binding site and the 567 nm peak to Co(2+) in the 5-coordinate site. This is further supported by the fact that the binding affinity of the Co(2+) associated with the 567 nm peak is enhanced when the pH is increased from 7.5 to 9.0, consistent with having an imidazole ligand from a histidine amino acid residue. On the basis of the MCD intensities, it is estimated that, when the 5-coordinate site is fully occupied, 0.1 equiv of cobalt is in the 6-coordinate site. Even when the cobalt concentration is very low, there is a small fraction of binuclear sites in EcMetAP formed through cooperative binding between the 5- and 6-coordinate Co(2+) ions. The magnetization behavior of the 6-coordinate Co(2+) MCD peak is consistent with an isolated pseudo-Kramer doublet ground state, suggesting that the cobalt ions in the binuclear sites are not magnetically coupled.  相似文献   

8.
Colloidal Co(2+)- and Cr(3+)-doped TiO(2) nanorods and nanocrystals were synthesized and studied by X-ray powder diffraction, electronic absorption spectroscopy, magnetic circular dichroism spectroscopy, magnetic susceptibility, and transmission electron microscopy. The nanorods were paramagnetic as colloids but showed room-temperature ferromagnetism when spin-coated aerobically into films. Crystalline domain size, thermal annealing, and dopant or defect migration are not the dominating factors converting the doped TiO(2) nanocrystals from the paramagnetic state to the ferromagnetic state. The most important factor for activating ferromagnetism is found to be the creation of grain boundary defects, proposed to be oxygen vacancies at nanocrystal fusion interfaces. These defects are passivated and the ferromagnetism destroyed by further aerobic annealing. These results not only help elucidate the origins of the TM(n+):TiO(2) DMS ferromagnetism but also represent an advance toward the controlled manipulation of high-T(C) DMS ferromagnetism using external chemical perturbations.  相似文献   

9.
Jia Zhou  Yang Li  Xiaohong Wu  Wei Qin 《Chemphyschem》2016,17(13):1993-1998
The recently proposed three‐atom‐thick single‐layer ZnSe sheet demonstrates a strong quantum confinement effect by exhibiting a large enhancement of band gap relative to the zinc blende (ZB) bulk phase. In this work, we aim at investigating the electronic and optical properties of this ultrathin tetragonal ZnSe single‐layer sheet with various chalcogen dopant atoms, based on density functional theory (DFT). We find that these single‐layer sheets with dopant atoms are still direct‐band semiconductors with tunable band gaps, which can lead to strong light absorption and potential applications in solar energy harvesting. Theoretical optical absorbance results show that the S‐doped ZnSe monolayer exhibits a higher absorption performance compared to other doped and undoped ZnSe monolayers. These findings pave a way for the modulation of novel ultrathin tetragonal ZnSe monolayers for a wealth of potential optoelectronic applications.  相似文献   

10.
X-ray magnetic circular dichroism (XMCD) experiments on diluted magnetic semiconductor nanocrystals were carried out to study the local electronic structure and magnetic properties of Mn(2+) embedded in the lattice of ZnSe nanoparticles. It is shown that Mn(2+) is exclusively present in the bulk of ZnSe nanoparticles. Neither Mn-Mn coupling nor traces of oxidation to higher Mn oxidation states was observed. This result, which is consistent with EPR spectroscopic data, provides clear proof of the location of Mn(2+) in semiconductor nanoparticles. Further, it is shown that the magnetic ions are highly polarised inside the nanocrystals, where they reach about 50 % of the theoretical value of a pure d(5) state under identical conditions.  相似文献   

11.
Relatively monodisperse and highly luminescent Mn(2+)-doped zinc blende ZnSe nanocrystals were synthesized in aqueous solution at 100 °C using the nucleation-doping strategy. The effects of the experimental conditions and of the ligand on the synthesis of nanocrystals were investigated systematically. It was found that there were significant effects of molar ratio of precursors and heating time on the optical properties of ZnSe:Mn nanocrystals. Using 3-mercaptopropionic acid as capping ligand afforded 3.1 nm wide ZnSe:Mn quantum dots (QDs) with very low surface defect density and which exhibited the Mn(2+)-related orange luminescence. The post-preparative introduction of a ZnS shell at the surface of the Mn(2+)-doped ZnSe QDs improved their photoluminescence properties, resulting in stronger emission. A 2.5-fold increase in photoluminescence quantum yield (from 3.5 to 9%) and of Mn(2+) ion emission lifetime (from 0.62 to 1.39 ms) have been observed after surface passivation. The size and the structure of these QDs were also corroborated by using transmission electron microscopy, energy dispersive spectroscopy, and X-ray powder diffraction.  相似文献   

12.
Magnetic ordering in doped Cd(1-x)Co(x)Se diluted magnetic quantum dots   总被引:1,自引:0,他引:1  
In this study, we report structural, vibrational, and magnetic data providing evidence of random ion displacement in the core of CdSe quantum dots on the Cd(2+) sites by Co(2+) ions (between x = 0 and 0.30). Structural evidence for core doping is obtained by analyzing the powder X-ray diffraction (pXRD), data which exhibits a linear lattice compression with increasing Co(2+) concentration, in accord with Vegard's law. Correlated with the pXRD shift, a hardening of the CdSe longitudinal optical phonon mode and a new local vibrational mode are observed which track Co(2+) doping concentration. Consistent with the observed core doping, superconducting quantum interference device (SQUID) measurements indicate a surprising increase for the onset of spin glass behavior by an order of magnitude over bulk Co:CdSe. Correlation of SQUID results, pXRD, and Raman measurements suggests that the observed enhancement of magnetic superexchange between Co(2+) dopant ions in this confined system arises from changes in the nature of coupling in size-restricted materials.  相似文献   

13.
Electronic absorption and 8 T magnetic circular dichroism (MCD) spectra are reported for nitrate salts of Pt(AuPPh3)8(2+) and Au(AuPPh3)8(3+) in poly(methyl methacrylate) (PMM) thin films at 295 and 10 K in the vis-UV region from 1.6 to 3.6 microm(-1) (1 microm(-1) = 10(4) cm(-1). Enhanced resolution is observed at low temperature, especially for Pt(AuPPh3)8(2+), which emphasizes the differences in the nature of the low-energy excited configurations and states between Pt(AuPPh3)8(2+) and Au(AuPPh3)8(3+). The absorption and MCD spectra for Pt(AuPPh3)8(2+) are interpreted in terms of a combination of excitations from filled Pt 5d orbitals to empty Au framework 6s orbitals and intraframework Au8(2+) (IF) transitions, whereas the spectra for Au(AuPPh3)8(3+) are ascribed entirely to Au IF transitions.  相似文献   

14.
The PduO-type adenosine 5'-triphosphate (ATP):corrinoid adenosyltransferase from Lactobacillus reuteri (LrPduO) catalyzes the transfer of the adenosyl-group of ATP to Co(1+)cobalamin (Cbl) and Co(1+)cobinamide (Cbi) substrates to synthesize adenosylcobalamin (AdoCbl) and adenosylcobinamide (AdoCbi(+)), respectively. Previous studies revealed that to overcome the thermodynamically challenging Co(2+) → Co(1+) reduction, the enzyme drastically weakens the axial ligand-Co(2+) bond so as to generate effectively four-coordinate (4c) Co(2+)corrinoid species. To explore how LrPduO generates these unusual 4c species, we have used magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectroscopic techniques. The effects of active-site amino acid substitutions on the relative yield of formation of 4c Co(2+)corrinoid species were examined by performing eight single-amino acid substitutions at seven residues that are involved in ATP-binding, an intersubunit salt bridge, and the hydrophobic region surrounding the bound corrin ring. A quantitative analysis of our MCD and EPR spectra indicates that the entire hydrophobic pocket below the corrin ring, and not just residue F112, is critical for the removal of the axial ligand from the cobalt center of the Co(2+)corrinoids. Our data also show that a higher level of coordination among several LrPduO amino acid residues is required to exclude the dimethylbenzimidazole moiety of Co(II)Cbl from the active site than to remove the water molecule from Co(II)Cbi(+). Thus, the hydrophilic interactions around and above the corrin ring are more critical to form 4c Co(II)Cbl than 4c Co(II)Cbi(+). Finally, when ATP analogues were used as cosubstrate, only "unactivated" five-coordinate (5c) Co(II)Cbl was observed, disclosing an unexpectedly large role of the ATP-induced active-site conformational changes with respect to the formation of 4c Co(II)Cbl. Collectively, our results indicate that the level of control exerted by LrPduO over the timing for the formation of the 4c Co(2+)corrinoid intermediates is even more exquisite than previously anticipated.  相似文献   

15.
Doping is a very important and effective method to be used to modulate the properties of two-dimensional (2D) materials. In this work, the electronic and magnetic properties of ultrathin tetragonal ZnSe monolayer doped by twenty different kinds of atoms neighboring Zn/Se were systemically investigated using first-principles calculations. Substitution at the Zn/Se sites was found to be easy if the monolayer was grown under Zn-/Se-poor conditions. Among non-metal dopants, only F atom is thermodynamically favored to replace Se atom, while a number of metal atoms (i.e. Ca, Sc, Ti, and Mn) are able to substitute Zn atom. It is suggested by theoretical calculations that pristine ZnSe monolayer inclines as an n-type semiconductor by certain doping. Our results open a new avenue for the modulation of the novel tetragonal ZnSe monolayer for a wealth of potential optoelectronic applications.  相似文献   

16.
Metal-free tetraazachlorin (TAC), -bacteriochlorin (TAB), and -isobacteriochlorin (TAiB) were characterized by electronic absorption, magnetic circular dichroism (MCD), fluorescence, and time-resolved ESR (TR-ESR) spectroscopy, and by cyclic voltammetry. The results are compared with those of metal-free tetraazaporphyrin (TAP). The potential difference DeltaE between the first oxidation and reduction couples decreases in the order TAP>TAiB>TAC>TAB. The splitting of both the Q and Soret bands decreases in the order TAB>TAC>TAP>TAiB. Corresponding to the split absorption bands, MCD spectra show a minus-to-plus pattern with increasing energy in both the Q and Soret regions, which suggests that the energy difference between the HOMO and second HOMO is larger than that between the LUMO and second LUMO. These spectroscopic properties and redox potentials were reproduced by molecular orbital calculations using the ZINDO/S Hamiltonian. The fluorescence quantum yields of the reduced species are much smaller than that of TAP. The zero-field splitting (ZFS) parameters D and E of the excited triplet states (T1) of these species decrease and increase, respectively, on going from TAP to TAC and further to TAB. The D and E values of TAiB are larger than those of the other species. The results are supported by the absence of interaction between the spin over reduced pyrrole moieties of the HOMO and over the LUMO, and by calculations of ZFS under a half-point-charge approximation.  相似文献   

17.
Paulat F  Lehnert N 《Inorganic chemistry》2008,47(11):4963-4976
High-spin (hs) ferric heme centers occur in the catalytic or redox cycles of many metalloproteins and exhibit very complicated magnetic circular dichroism (MCD) and UV-vis absorption spectra. Therefore, detailed assignments of the MCD spectra of these species are missing. In this study, the electronic spectra (MCD and UV-vis) of the five-coordinate hs ferric model complex [Fe(TPP)(Cl)] are analyzed and assigned for the first time. A correlated fit of the absorption and low-temperature MCD spectra of [Fe(TPP)(Cl)] lead to the identification of at least 20 different electronic transitions. The assignments of these spectra are based on the following: (a) variable temperature and variable field saturation data, (b) time-dependent density functional theory calculations, (c) MCD pseudo A-terms, and (d) correlation to resonance Raman (rRaman) data to validate the assignments. From these results, a number of puzzling questions about the electronic spectra of [Fe(TPP)(Cl)] are answered. The Soret band in [Fe(TPP)(Cl)] is split into three components because one of its components is mixed with the porphyrin A2u72-->Eg82/83 (pi-->pi*) transition. The broad, intense absorption feature at higher energy from the Soret band is due to one of the Soret components and a mixed sigma and pi chloro to iron CT transition. The high-temperature MCD data allow for the identification of the Q v band at 20 202 cm(-1), which corresponds to the C-term feature at 20 150 cm(-1). Q is not observed but can be localized by correlation to rRaman data published before. Finally, the low energy absorption band around 650 nm is assigned to two P-->Fe charge transfer transitions, one being the long sought after A1u(HOMO)-->d pi transition.  相似文献   

18.
Gold clusters protected by 3-mercaptophenylboronic acid (3-MPB) with a mean core diameter of 1.1 nm are successfully isolated, and their absorption, magnetic circular dichroism (MCD), and chiroptical responses in metal-based electronic transition regions, which can be induced by surface D-/L-fructose complexation, are examined. It is well-known that MCD basically corresponds to electronic transitions in the absorption spectrum, so simultaneous deconvolution analysis of electronic absorption and MCD spectra of the gold cluster compound is conducted under the constrained requirement that a single set of Gaussian components be used for their fitting. We then find that fructose-induced chiroptical response is explained in terms of the deconvoluted spectra experimentally obtained. We believe this spectral analysis is expected to benefit better understanding of the electronic states and the origin of the optical activity in chiral metal clusters.  相似文献   

19.
《印度化学会志》2021,98(12):100254
An aqueous-based green route has been demonstrated for the preparation of ZnSe quantum dots (QDs) and doping of transition metals in the presence of thiol mercaptopropionic acid (MPA) as growth moderator by refluxing at 100 ​°C. The structure and morphology of synthesized ZnSe quantum dots have been investigated by using X-ray diffraction studies (XRD), Ultraviolet–Visible spectroscopy (UV–vis), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL) Spectroscopy. XRD studies indicate the structure of the quantum dots is cubic with diameters in the range of 4–5 ​nm. Fourier Transform Infrared (FTIR) studies proves that MPA ligands were bound strongly on the ZnSe nanocrystal surface as thiolate. The band gap energy (Eg) was calculated to be 3.8 ​eV which is blue shifted from the standard value of bulk band gap (2.60–2.70eV. Photoluminescence spectra shows broad emission value ranging between 400 and 700 ​nm due to surface defects which has been reduced by doping with transition metals (Fe, Co, Ni, Cd) in aqueous medium. The effective passivation of trap luminescence is done by doping leading to increase in photoluminescence quantum yield specifically with nickel and cadmium doped ZnSe QDs.  相似文献   

20.
Colloidal cobalt-doped TiO(2) (anatase) nanocrystals were synthesized and studied by electronic absorption, magnetic circular dichroism, transmission electron microscopy, magnetic susceptibility, cobalt K-shell X-ray absorption spectroscopy, and extended X-ray absorption fine structure measurements. The nanocrystals were paramagnetic when isolated by surface-passivating ligands, weakly ferromagnetic (M(s) approximately 1.5 x 10(-)(3) micro(B)/Co(2+) at 300 K) when aggregated, and strongly ferromagnetic (up to M(s) = 1.9 micro(B)/Co(2+) at 300 K) when spin-coated into nanocrystalline films. X-ray absorption data reveal that cobalt is in the Co(2+) oxidation state in all samples. In addition to providing strong experimental support for the existence of intrinsic ferromagnetism in cobalt-doped TiO(2), these results demonstrate the possibility of using colloidal TiO(2) diluted magnetic semiconductor nanocrystals as building blocks for assembly of ferromagnetic semiconductor nanostructures with potential spintronics applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号