首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Cetyl trimethyl ammonium (CTA) ions have been confined within galleries of layered CdPS3 at two different grafting densities. Low grafting densities are obtained on direct intercalation of CTA ions into CdPS3 to give Cd0.93PS3(CTA)0.14. Intercalation occurs with a lattice expansion of 4.8 ? with the interlamellar surfactant ion lying flat forming a monolayer. Intercalation at higher grafting densities was effected by a two-step ion-exchange process to give Cd0.83PS3(CTA)0.34, with a lattice expansion of 26.5 ?. At higher grafting densities the interlamellar surfactant ions adopt a tilted bilayer structure.13C NMR and orientation-dependent IR vibrational spectroscopy on single crystals have been used to probe the conformation and orientation of the methylene ‘tail’ of the intercalated surfactant in the two phases. In the monolayer phase, the confined methylene chain adopts an essentially all-trans conformation with most of the trans chain aligned parallel to the gallery walls. On lowering the temperature, molecular plane aligns parallel, so that the methylene chain lies flat, rigid and aligned to the confining surface. In the bilayer phase, most bonds in the methylene chain are in trans conformation. It is possible to identify specific conformational sequences containing a gauche bond, in the interior and termini of the intercalated methylene. These high energy conformers disappear on cooling leaving all fifteen methylene units of the intercalated cetyl trimethyl ammonium ion in trans conformational registry at 40 K.  相似文献   

2.
The spontaneous curvature (H(0)), mean and Gaussian bending constants (k(c) and k (c)), as defined in the well-known Helfrich expression, have been calculated from a detailed model for a thermodynamically open surfactant layer. The effect of head group cross-section area, surfactant tail length and electrolyte concentration for monovalent ionic surfactants have been investigated. Geometrical packing constraints subjected to the aggregated hydrocarbon tails and electrostatics are found to be the dominant contributions to H(0), k(c) and k (c). In addition, the transition from spherocylindrical micelles to vesicles were investigated in terms of the three parameters and the following simple expressions were derived as criteria for coexistence between micelles and vesicles H(0)=1/4 xi and N(ves)/N(mic)=exp[4 pi(k(c)+k (c))/kT], where xi is the thickness of the hydrocarbon part of the film and N(mic) and N(ves) the average aggregation numbers of micelles and vesicles, respectively. However, it is found that the ratio N(ves)/N(mic) is order of magnitudes too large for vesicles to form at all in charged single-surfactant systems where the surfactant head is of moderate size.  相似文献   

3.
The effect of branching on the Helfrich mean k C and Gaussian k G bending moduli of polymer brushes consisting of dendrons grafted to both sides of a thin impermeable surface (membrane) is studied theoretically. The case of an athermal solvent is considered. The moduli are calculated from a change in the free energy of a brush upon cylindrical and spherical bending of the grafting surface, respectively. The grafting density σ, the total number of monomer units N, and the number of generations g in tethered dendrons are varied. Two variants of the self-consistent field method are applied: the analytical approach and the numerical Scheutjens-Fleer method. The first method is applied at small values of σ, when the density profile of monomer units of grafted chains is parabolic in shape. The second method is free of these restrictions. The universal ratio between moduli is found: k G =?64/105k C . Both methods predict that the values of moduli decrease with increasing g at constant N and σ. The scaling dependence N 3 remains valid for the moduli of dendritic brushes with different generation numbers g at all of the considered values of σ. The analytical approach also gives the universal scaling dependence k C k G ~ σ7/3; however, the numerical method predicts that the dependences of moduli on σ become stronger with increasing degree of branching of tethered dendrons.  相似文献   

4.
A new method for visualizing solid phase surfactant monolayers is presented. This method utilizes infrared (IR) imaging of the surface of a warm subphase covered by the monolayer. When the subphase is deep, natural convection occurs, resulting in a complex surface temperature field that is easily visualized using an IR camera. The presence of a surfactant monolayer changes the hydrodynamic boundary condition at the interface, dramatically altering the surface temperature field, and permitting the differentiation of surfactant-covered and surfactant-free regions. In this work, solid phase monolayers are imaged using this IR method. Fractures in the monolayer are dramatically visualized because of the sudden elimination of surfactant in the region opened up by the crack. The method is demonstrated in a wind/water tunnel, where a stearic acid monolayer is deposited and a crack is created through shear on the surfactant surface, created by suddenly increasing the velocity of the air over the water.  相似文献   

5.
Gramicidin A, a polypeptide antibiotic forming transmembrane ion channels, has been incorporated into a Langmuir monolayer formed by a semifluorinated alkane (SFA). In this work, partially fluorinated tetracosane, perfluorohexyloctadecane (F6H18), has been applied, aiming at finding a suitable matrix for gramicidin A to be transferred onto solid support for a biosensor design. For this purpose, the physiological conditions were of special interest (mixed monolayers containing low gramicidin proportion and the surface pressure of 30 mN/m). Mixed monolayers of gramicidin and SFA were found to be miscible within the whole range of mole fractions. A very significant increase of the stability of SFA monolayer has been found in the presence of gramicidin, even at such a low proportion as X(gramicidin) = 0.1, which is reflected in a 3.5-fold increase of the collapse pressure value of mixed monolayer as compared to the film from pure SFA. This interesting phenomenon has been interpreted as being due to the existence of a strong dipole-dipole interaction between both film-forming molecules. Opposite sign of the measured electric surface potential for gramicidin and SFA, resulting from different directions of the dipole moment vectors in both film molecules, implies that the ordered, antiparallel orientation of the dipole moments in the mixed gramicidin/SFA system can be responsible for its extremely high stability.  相似文献   

6.
The dynamics of water near the polar headgroups of surfactants in a monolayer adsorbed at the air/water interface is likely to play a decisive role in determining the physical behavior of such organized assemblies. We have carried out an atomistic molecular dynamics (MD) simulation of a monolayer of the anionic surfactant sodium bis(2-ethyl-1-hexyl) sulfosuccinate (aerosol-OT or AOT) adsorbed at the air/water interface. The simulation is performed at room temperature with a surface coverage of that at the critical micelle concentration (78 Angstrom(2)/molecule). Detailed analyses of the lifetime dynamics of surfactant-water (SW) and water-water (WW) hydrogen bonds at the interface have been carried out. The nonexponential hydrogen bond lifetime correlation functions have been analyzed by using the formalism of Luzar and Chandler, which allowed identification of the bound states at the interface and quantification of the dynamic equilibrium between bound and quasi-free water molecules, in terms of time-dependent relaxation rates. It is observed that the water molecules present in the first hydration layer form strong hydrogen bonds with the surfactant headgroups and hence have longer lifetimes. Importantly, it is found that the overall relaxation of the SW hydrogen bonds is faster for those water molecules which form two hydrogen bonds with the surfactant headgroups than those forming one such hydrogen bond. Equally interestingly, it is further noticed that water molecules beyond the first hydration layer form weaker hydrogen bonds than pure bulk water.  相似文献   

7.
8.
Amphiphilic metalloporphyrins assemble in water to form supramolecular fibers, which have been characterized by transmission electron microscopy. Loose octopus porphyrin fibers can be doped with hydrophobic electron acceptors, metalloporphyrin monomolecular sheets are crystalline. Charge separation occurs in amino porphyrin fibers without added electron acceptors. Bolaamphiphilic porphyrins with four pyridinyl or methyl pyridinium groups in β-pyrrolic positions have been synthesized. The regioisomer mixture is very soluble in water (≌ 0.1 M) and is ideally suited to form heterodimers with negatively charged ms-tetrasubstituted porphyrins. Bimetallic porphyrinate pairs are described. The zinc complex is stable down to pH 1.0. Regioisomer II forms well-defined molecular monolayer leaflets in bulk water at pH 2.5. The surface structure of such monolayers is discussed. It consists of a large cationic plane and hydrophobic edges. Possible applications are discussed shortly.  相似文献   

9.
Pulmonary lung surfactant is a mixture of surfactants that reduces surface tension during respiration. Perfluorinated surfactants have potential applications for artificial lung surfactant formulations, but the interactions that exist between these compounds and phospholipids in surfactant monolayer mixtures are poorly understood. We report here, for the first time, a detailed thermodynamic and structural characterization of a minimal pulmonary lung surfactant model system that is based on a ternary phospholipid-perfluorocarbon mixture. Langmuir and Langmuir-Blodgett monolayers of binary and ternary mixtures of the surfactants 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and perfluorooctadecanoic acid (C18F) have been studied in terms of miscibility, elasticity and film structure. The extent of surfactant miscibility and elasticity has been evaluated via Gibbs excess free energies of mixing and isothermal compressibilities. Film structure has been studied by a combination of atomic force microscopy and fluorescence microscopy. Combined thermodynamic and microscopy data indicate that the ternary monolayer films were fully miscible, with the mixed films being more stable than their pure individual components alone, and that film compressibility is minimally improved by the addition of perfluorocarbons to the phospholipids. The importance of these results is discussed in context of these mixtures' potential applications in pulmonary lung surfactant formulations.  相似文献   

10.
We have used dissipative particle dynamics to simulate amphiphilic monolayers on the interface between oil and water. An ultralow interfacial tension is imposed by means of Monte Carlo to resemble the amphiphilic films that separate oil and water regions in microemulsions. We calculate the bending modulus by analyzing the undulation spectrum. By varying the surfactant chain length and topology we investigate the effect of surfactant structure and composition of the monolayer on the bending moduli. We find that increasing the thickness has a larger effect than increasing the density of the layer. This follows from the observations that at a given interfacial tension, the bending modulus increases with chain length and is larger for linear than branched surfactants. The increase with chain length is approximately linear, which is slower than the theoretical predictions at a fixed area. We also investigated a binary mixture of short and long surfactants compared to pure layers of the same average chain length. We find a roughly linear decrease in bending modulus with mole fraction of short surfactants. Furthermore, the mixed film has a lower bending modulus than the corresponding pure film for all mole fractions. Linking the bending moduli to the structure of the surfactants is an important step in predicting the stability of microemulsions.  相似文献   

11.
Investigations of the thermotropic liquid-crystalline properties of 6,6'-di-O-stearoylsucrose show, for the first time, that glycolipids can exhibit phase transitions within the smectic A phase.  相似文献   

12.
采用分子动力学模拟研究了气液界面上钙离子对阴离子表面活性剂十二烷基苯磺酸钠单层膜聚集结构的影响.结果表明,单层膜结构与表面覆盖度及Ca2+离子存在与否均有关系.Ca2+离子能够压缩表面活性剂极性头使聚集结构排列更加紧密,均力势体现了Ca2+离子与极性头之间的结合能力强弱,二者之间的相互作用与稳定的溶剂分离极小值有关,而Ca2+离子需要克服一个溶剂能障才能与之发生相互作用,并引起极性头周围水分子结构的重排.模拟表明,分子动力学方法可以在分子水平上研究无机盐离子对表面活性剂单层膜水化结构的影响,解释无机盐离子在界面膜中的动力学行为.  相似文献   

13.
A new method to probe the modification of the elasticity of phospholipid bilayers is presented. The purpose here concerns the action of a solubilizing surfactant on a vesicle bilayer. This method is based on the measure of the under-field elongation of giant magnetic-fluid-loaded liposomes. The addition of the nonionic surfactant octyl-beta-d-glucopyranoside (OG) to vesicles at sublytic levels increases the elasticity of the membrane, as shown by the value of the bending modulus K(b), which decreases. K(b) measured around 20 kT for a pure 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer indeed reaches a few kT in the case of the mixed OG-DOPC bilayer. The purpose and interest of this study are to allow the determination of the membrane bending modulus before and after the addition of OG on the same magnetic liposome. Moreover, the experimental conditions used in this work allow the control of lipid and surfactant molar fractions in the mixed aggregates. Then, optical microscopy observation can be performed on samples in well-defined regions of the OG-phospholipid state diagram.  相似文献   

14.
Two kinds of Gemini surfactant monolayer, which showed different hydrophobic property, were selected as adsorption substrates for collagen. The topographic images of collagen were investigated by using an atomic force microscopy (AFM). Their auto-organized nano-structures were influenced by the property of substrate and the process of sample preparation, such as concentration of collagen solution, adsorption time and drying condition. Network-like structures formed on the both Gemini monolayers. With increasing concentration of collagen solution and adsorption time, the density of the network-like structure increased and their strands became wider and the mesh sizes decreased apparently. Contrary to the reference, the network-like structures of collagen also formed on the less hydrophobic Gemini surfactant monolayer even after very short adsorption time, which was considered to result from the more hydrophobic patch on it.  相似文献   

15.
The photopolymerization of thin (monolayer and bilayer) Langmuir-Blodgett films of the lead salt of 2-docosynoic acid (CH3(CH2)18C≡CCOOH, DCA), with a triple bond near the carboxylic group, and the lead salt of 23-tetracosynoic acid (HC≡C(CH2)21COOH, TCA), with a triple bond far from the carboxyl group, has been investigated by IR spectroscopy. The principal distinctions between the polymerization kinetics of the DCA salt and that of the TCA salt are observed for bilayers. It is hypothesized that the perfection of the molecular packing in the bilayers is governed by the interlayer interaction of carboxyl groups, which exerts a stronger effect on the mutual orientation of the triple bonds in the DCA salt films as compared to the TCA salt films. A model is suggested for describing the kinetics of the two-dimensional photopolymerization of monoacetylenic compounds. A comparison between simulated and experimental data for the monolayer films demonstrates that the observed saturation of conversion (α) as a function of the UV exposure time (t) at the α ≈ 0.5?0.6 level can be attributed to the fact that the intermolecular distance lengthens with local film densification during polymerization. The effects of the substrate and the orientation of molecules in the layer on α (t) is reported.  相似文献   

16.
Caillé analysis of the small-angle X-ray line shape of the lamellar phase of 7:3 wt/wt cetyltrimethylammonium tosylate (CTAT)/sodium dodecylbenzene sulfonate (SDBS) bilayers shows that the bending elastic constant is kappa = (0.62 +/- 0.09)k(B)T. From this and previous results, the Gaussian curvature constant is kappa = (-0.9 +/- 0.2)k(B)T. For 13:7 wt/wt CTAT/SDBS bilayers, the measured bending elasticity decreases with increasing water dilution, in good agreement with predictions based on renormalization theory, giving kappa(o) = 0.28k(B)T. These results show that surfactant mixing is sufficient to make kappa approximately k(B)T, which promotes strong, Helfrich-type repulsion between bilayers that can dominate the van der Waals attraction. These are necessary conditions for spontaneous vesicles to be equilibrium structures. The measurements of the bending elasticity are confirmed by the transition of the lamellar phase of CTAT/SDBS from a turbid, viscoelastic gel to a translucent fluid as the water fraction is decreased below 40 wt %. Freeze-fracture electron microscopy shows that the gel is characterized by spherulite defects made possible by spontaneous bilayer curvature and low bending elasticity. This lamellar gel phase is common to a number of catanionic surfactant mixtures, suggesting that low bending elasticity and spontaneous curvature are typical of these mixtures that form spontaneous vesicles.  相似文献   

17.
The spread or Langmuir monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with a double-tailed cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), at the air/water interface was analyzed with surface pressure-area isotherms, area relaxation curves, and Brewster angle microscope (BAM) images. The surface pressure-area isotherms showed that with increasing the DHDAB molar ratio, X(DHDAB), spread monolayers of HTMA-DS with DHDAB became rigid. In addition, unreasonably small limiting areas per alkyl chain of the molecules in the monolayers were found, especially at X(DHDAB)=0.5, implying the molecular loss from the monolayers at the interface. For spread HTMA-DS/DHDAB monolayers at the interface, a new IPA, DHDA-DS, was proposed to form through the displacement of HTMA(+) from HTMA-DS by DHDA(+), leaving HTMA(+) dissociated. The formation of DHDA-DS and the desorption of dissociated HTMA(+) upon the interface compression were supported by the results obtained from designed monolayer experiments with BAM observations, and were discussed by considering the hydrophilicity, packing efficiency, and headgroup charge characteristic of the species. Moreover, the area relaxation curves of spread HTMA-DS/DHDAB monolayers suggested that the formation of DHDA-DS was strongly related to the improved monolayer stability at the interface, which may have implications for the DHDAB-enhanced physical stability of catanionic vesicles composed of HTMA-DS.  相似文献   

18.
19.
Expressions have been derived from which the spontaneous curvature (H(0)), bending rigidity (k(c)), and saddle-splay constant (k(c)) of mixed monolayers and bilayers may be calculated from molecular and solution properties as well as experimentally available quantities such as the macroscopic hydrophobic-hydrophilic interfacial tension. Three different cases of binary surfactant mixtures have been treated in detail: (i) mixtures of an ionic and a nonionic surfactant, (ii) mixtures of two oppositely charged surfactants, and (iii) mixtures of two ionic surfactants with identical headgroups but different tail volumes. It is demonstrated that k(c)H(0), k(c), and k(c) for mixtures of surfactants with flexible tails may be subdivided into one contribution that is due to bending properties of an infinitely thin surface as calculated from the Poisson-Boltzmann mean field theory and one contribution appearing as a result of the surfactant film having a finite thickness with the surface of charge located somewhat outside the hydrophobic-hydrophilic interface. As a matter of fact, the picture becomes completely different as finite layer thickness effects are taken into account, and as a result, the spontaneous curvature is extensively lowered whereas the bending rigidity is raised. Furthermore, an additional contribution to k(c) is present for surfactant mixtures but is absent for k(c)H(0) and k(c). This contribution appears as a consequence of the minimization of the free energy with respect to the composition of a surfactant layer that is open in the thermodynamic sense and must always be negative (i.e., k(c) is generally found to be brought down by the process of mixing two or more surfactants). The magnitude of the reduction of k(c) increases with increasing asymmetry between two surfactants with respect to headgroup charge number and tail volume. As a consequence, the bending rigidity assumes the lowest values for layers formed in mixtures of two oppositely charged surfactants, and k(c) is further reduced in anionic/cationic surfactant mixtures where the surfactant in excess has the smaller tail volume. Likewise, the reduction of k(c) is enhanced in mixtures of an ionic and a nonionic surfactant where the ionic surfactant has the smaller tail. The effective bilayer bending constant (k(bi)) is also found to be reduced by mixing, and as a result, k(bi) is seen to go through a minimum at some intermediate composition. The reduction of k(bi) is expected to be most pronounced in mixtures of two oppositely charged surfactants where the surfactant in excess has the smaller tail in agreement with experimental observations.  相似文献   

20.
Fluctuations of an insoluble surfactant concentration along the free liquid surface induced by steady surface waves are considered theoretically. The energy of a waved surface is assumed to consist of surface tension, curvature, and van der Waals energy components. Dependencies of the surface tension and the bending stiffness versus the surfactant concentration are assumed to be linear relative to some reference level. The van der Waals energy is taken in the form of interaction term for a thin film. Minimization of the total energy allows the expression for the deviations of concentration to be obtained. The distribution of a surfactant concentration relative to some reference level has been found to be periodic, with a period that is half of the wave period, and the amplitude of oscillations is a function of a wave number that is very similar to the Landau expansion of the free-energy near the critical point in phase transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号