首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
利用Coulomb-Volkov方法研究了H原子在不同波长的线性极化强激光场中电离的能量谱和动量谱,并与强场近似和直接数值求解含时Schr(o|¨)dinger方程的结果进行比较,结果发现:随着激光频率的增加,由Coulomb-Volkov方法得到的结果与数值求解含时Schr(o|¨)dinger方程的结果符合得很好.  相似文献   

2.
We investigate the general form of a third-order linear differential operator that is required to commute with the Schrödinger Hamiltonian in two dimensions, and find that the third-order part must be a polynomial of third degree in the generators of the Euclidean group. Partial differential equations that the potentialV must satisfy are derived, and solved for the special cases where the Schrödinger equation separates in polar or Cartesian coordinates. The functionsV thus obtained are nonsingular, but are periodic through elliptic functions. After separation of variables, the Schrödinger equation gives Lame's equation.  相似文献   

3.
Cartan's geometric theory of partial differential equations is applied to a system of Schrödinger equations. It is shown that the choice of a Riemann manifold which is a torus is equivalent to using a many-body neutron and proton potential commonly used in nuclear theory. The theory is applied to spinless, ground-state systems using the Dirichlet principle to minimise the energy, to obtain the neutron-proton ratios, Coulomb and binding energies of nuclei. A shell structure naturally manifests itself from the choice of the manifold.  相似文献   

4.
利用传统的强场近似方法和考虑Coulomb修正的强场近似方法,计算了H原子在激光场中的总电离几率及H原子在不同波长激光场中电离的能量谱,并将得到的能量谱与直接数值求解含时Schrödinger方程的结果进行了比较,结果发现:当激光波长较长时,考虑Coulomb 修正的强场近似方法得到的结果与数值求解含时Schrödinger方程的结果符合得较好。  相似文献   

5.
6.
It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.  相似文献   

7.
The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.  相似文献   

8.
The Korteweg-de Vries equation is studied within the group-theoretical framework. Analogous equations are obtained for which the many-dimensional Schrödinger equation (with nonlocal potential) plays the same role as the one-dimensional Schrödinger equation does in the theory of the Korteweg-de Vries equation.  相似文献   

9.
Quantum Hamilton-Jacobi theory and supersymmetric quantum mechanics (SUSYQM) are two parallel methods to determine the spectra of a quantum mechanical systems without solving the Schrödinger equation. It was recently shown that the shape invariance, which is an integrability condition in SUSYQM formalism, can be utilized to develop an iterative algorithm to determine the quantum momentum functions. In this Letter, we show that shape invariance also suffices to determine the eigenvalues in quantum Hamilton-Jacobi theory.  相似文献   

10.
In systems like Yang-Mills or gravity theory, which have a symmetry of gauge type, neither phase space nor configuration space is a manifold but rather an orbifold with singular points corresponding to classical states of non-generically higher symmetry. The consequences of these symmetries for quantum theory are investigated. First, a certain orbifold configuration space is identified. Then, the Schrödinger equation on this orbifold is considered. As a typical case, the Schrödinger equation on (double) cones over Riemannian manifolds is discussed in detail as a problem of selfadjoint extensions. A marked tendency towards concentration of the wave function around the singular points in configuration space is observed, which generically even reflects itself in the existence of additional bound states and can be interpreted as a quantum mechanism of symmetry enhancement.  相似文献   

11.
There are a lot of difficulties and troubles in quantum mechanics, when the linear Schrödinger equation is used to describe microscopic particles. Thus, we here replace it by a nonlinear Schrödinger equation to investigate the properties and rule of microscopic particles. In such a case we find that the motion of microscopic particle satisfies classical rule and obeys the Hamiltonian principle, Lagrangian and Hamilton equations. We verify further the correctness of these conclusions by the results of nonlinear Schrödinger equation under actions of different externally applied potential. From these studies, we see clearly that rules and features of motion of microscopic particle described by nonlinear Schrödinger equation are greatly different from those in the linear Schrödinger equation, they have many classical properties, which are consistent with concept of corpuscles. Thus, we should use the nonlinear Schrödinger equation to describe microscopic particles.  相似文献   

12.
Chi-Feng Chen  Sien Chi 《Optik》2006,117(10):489-491
The wave equation of TM polarized subwavelength beam propagations in a nonlinear planar waveguide is derived beyond the paraxial approximation. This modified equation contains more higher-order linear and nonlinear terms than the nonlinear Schrödinger equation. The propagation of fundamental subwavelength spatial solitons is numerically studied. It is shown that the effect of the higher nonlinear terms is significant. That is, for the propagation of narrower beam the modified nonlinear Schrödinger equation is more suitable than the nonlinear Schrödinger equation.  相似文献   

13.
A. León  M. Pacheco 《Physics letters. A》2011,375(47):4190-4197
In this work we study the electronics and dynamical properties of an array of graphane nanoclusters. The electronic properties are obtained from first principles calculations. The dynamical study is performed by solving the time-dependent Schrödinger equation, adopting the occupation number Hamiltonian and using parameters obtained with first principles calculations. The thermal behavior is simulated by a stochastic algorithm. Our results show that for a set of geometric parameters of the array of nanoclusters, the system exhibits bi-stability in the charge configuration, excitation energies that allow operation at room temperature, operation times below the picosecond and scalability.  相似文献   

14.
A path integral representation is obtained for the stochastic partial differential equation of Schrödinger type arising in the theory of open quantum systems subject to continuous nondemolition measurement and filtering, known as the a posteriori or Belavkin equation. The result is established by means of Fresnel-type integrals over paths in configuration space. This is achieved by modifying the classical action functional in the expression for the amplitude along each path by means of a stochastic Itô integral. This modification can be regarded as an extension of Menski's path integral formula for a quantum system subject to continuous measurement to the case of the stochastic Schrödinger equation.  相似文献   

15.
We compute all potentials with the following property: The one-dimensional nonrelativistic Schrödinger equation for these potentials has irregular singular points at infinity and/or zero and is solved by a finite normal series. We restrict to expansion order zero, discuss some properties of the potentials obtained and, as an application, calculate for some given potentials exact solutions and energies. The aim of this paper is to provide a tool for finding exact solutions of the Schrödinger equation for a large class of singular potentials.  相似文献   

16.
The problem of separation of variables in the stationary Schrödinger equation is considered for a charge moving in an external electromagnetic field. On the basis of the definition formulated, necessary and sufficient conditions are found for separation of variables in equations of elliptic type to which the stationary Schrödinger equation belongs. Application of general theorems made it possible to enumerate all types of electromagnetic fields and systems of coordinates in which separation of variables in the stationary Schrödinger equation is possible. Systems of ordinary differential equations which the wave function in the separated variables satisfies are written down to explicit form.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 45–50, August, 1972.  相似文献   

17.
We construct the d-dimensional “half” Schrödinger equation, which is a kind of the root of the Schrödinger equation, from the (d+1)-dimensional free Dirac equation. The solution of the “half” Schrödinger equation also satisfies the usual free Schrödinger equation. We also find that the explicit transformation laws of the Schrödinger and the half Schrödinger fields under the Schrödinger symmetry transformation are derived by starting from the Klein-Gordon equation and the Dirac equation in d+1 dimensions. We derive the 3- and 4-dimensional super-Schrödinger algebra from the superconformal algebra in 4 and 5 dimensions. The algebra is realized by introducing two complex scalar and one (complex) spinor fields and the explicit transformation properties have been found.  相似文献   

18.
强激光场中模型氢原子和真实氢原子产生高次谐波的比较   总被引:1,自引:1,他引:0  
通过数值求解原子在强激光场中的含时薛定谔方程,研究了有库仑奇点和无库仑奇点的一维模型氢原子和三维真实氢原子产生高次谐波的特性.结果表明,有库仑奇点和无库仑奇点的一维模型氢原子和三维真实氢原子产生高次谐波的截止位置相同,但是高次谐波强度变化特征明显不同,进一步的研究表明,无库仑奇点的模型氢原子产生的高次谐波谱相对变化趋势与三维真实氢原子的高次谐波谱变化趋势是完全一致的.  相似文献   

19.
The Planck aether hypothesis assumes that space is densely filled with an equal number of locally interacting positive and negative Planck masses obeying an exactly nonrelativistic law of motion. The Planck masses can be described by a quantum mechanical two-component nonrelativistic operator field equation having the form of a two-component nonlinear Schrödinger equation, with a spectrum of quasiparticles obeying Lorentz invariance as a dynamic symmetry for energies small compared to the Planck energy. We show that quantum mechanics itself can be derived from the Newtonian mechanics of the Planck aether as an approximate solution of Boltzmann's equation for the locally interacting positive and negative Planck masses, and that the validity of the nonrelativistic Schrödinger equation depends on Lorentz invariance as a dynamic symmetry. We also show how the many-body Schrödinger wave function can be factorized into a product of quasiparticles of the Planck aether with separable quantum potentials. Finally, we present a possible explanation of wave function collapse as a kind of enhanced gravitational collapse in the presence of the negative Planck masses.  相似文献   

20.
We review and compare different variational formulations for the Schrödinger field. Some of them rely on the addition of a conveniently chosen total time derivative to the hermitic Lagrangian. Alternatively, the Dirac-Bergmann algorithm yields the Schrödinger equation first as a consistency condition in the full phase space, second as canonical equation in the reduced phase space. The two methods lead to the same (reduced) Hamiltonian. As a third possibility, the Faddeev-Jackiw method is shown to be a shortcut of the Dirac method. By implementing the quantization scheme for systems with second class constraints, inconsistencies of previous treatments are eliminated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号