首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we apply the method of potentials for studying the Dirichlet and Neumann boundary-value problems for a B-elliptic equation in the form
$ \Delta _{x'} u + B_{x_{p - 1} } u + x_p^{ - \alpha } \frac{\partial } {{\partial x_p }}\left( {x_p^\alpha \frac{{\partial u}} {{\partial x_p }}} \right) = 0 $ \Delta _{x'} u + B_{x_{p - 1} } u + x_p^{ - \alpha } \frac{\partial } {{\partial x_p }}\left( {x_p^\alpha \frac{{\partial u}} {{\partial x_p }}} \right) = 0   相似文献   

2.
In this paper we discuss the fundamental solution of the Keldysh type operator $ L_\alpha u \triangleq \frac{{\partial ^2 u}} {{\partial x^2 }} + y\frac{{\partial ^2 u}} {{\partial y^2 }} + \alpha \frac{{\partial u}} {{\partial y}} $ L_\alpha u \triangleq \frac{{\partial ^2 u}} {{\partial x^2 }} + y\frac{{\partial ^2 u}} {{\partial y^2 }} + \alpha \frac{{\partial u}} {{\partial y}} , which is a basic mixed type operator different from the Tricomi operator. The fundamental solution of the Keldysh type operator with $ \alpha > - \frac{1} {2} $ \alpha > - \frac{1} {2} is obtained. It is shown that the fundamental solution for such an operator generally has stronger singularity than that for the Tricomi operator. Particularly, the fundamental solution of the Keldysh type operator with $ \alpha < \frac{1} {2} $ \alpha < \frac{1} {2} has to be defined by using the finite part of divergent integrals in the theory of distributions.  相似文献   

3.
This paper is devoted to studying the initial value problems of the nonlinear Kaup Kupershmidt equations δu/δt + α1 uδ^2u/δx^2 + βδ^3u/δx^3 + γδ^5u/δx^5 = 0, (x,t)∈ E R^2, and δu/δt + α2 δu/δx δ^2u/δx^2 + βδ^3u/δx^3 + γδ^5u/δx^5 = 0, (x, t) ∈R^2. Several important Strichartz type estimates for the fundamental solution of the corresponding linear problem are established. Then we apply such estimates to prove the local and global existence of solutions for the initial value problems of the nonlinear Kaup- Kupershmidt equations. The results show that a local solution exists if the initial function u0(x) ∈ H^s(R), and s ≥ 5/4 for the first equation and s≥301/108 for the second equation.  相似文献   

4.
Let f(n) be a strongly additive complex-valued arithmetic function. Under mild conditions on f, we prove the following weighted strong law of large numbers: if X,X 1,X 2, … is any sequence of integrable i.i.d. random variables, then
$ \mathop {\lim }\limits_{N \to \infty } \frac{{\sum\nolimits_{n = 1}^N {f(n)X_n } }} {{\sum\nolimits_{n = 1}^N {f(n)} }} = \mathbb{E}Xa.s. $ \mathop {\lim }\limits_{N \to \infty } \frac{{\sum\nolimits_{n = 1}^N {f(n)X_n } }} {{\sum\nolimits_{n = 1}^N {f(n)} }} = \mathbb{E}Xa.s.   相似文献   

5.
Wavelet–type transform associated with singular Laplace–Bessel differential operator is introduced and the relevant Calderón–type reproducing formula is established. Representations of the generalized Bessel potentials 0)$ " align="middle" border="0"> and their inverses via the wavelet–type transform are obtained.  相似文献   

6.
Zeta-generalized-Euler-constant functions,
$ \gamma \left( s \right): = \sum\limits_{k = 1}^\infty {\left( {\frac{1} {{k^s }} - \int_k^{k + 1} {\frac{{dx}} {{x^s }}} } \right)} $ \gamma \left( s \right): = \sum\limits_{k = 1}^\infty {\left( {\frac{1} {{k^s }} - \int_k^{k + 1} {\frac{{dx}} {{x^s }}} } \right)}   相似文献   

7.
This paper is concerned with the divergence points with fast growth orders of the partial quotients in continued fractions. Let S be a nonempty interval. We are interested in the size of the set of divergence points
$ E_\varphi (S) = \left\{ {x \in [0,1):{\rm A}\left( {\frac{1} {{\varphi (n)}}\sum\limits_{k = 1}^n {\log a_k (x)} } \right)_{n = 1}^\infty = S} \right\}, $ E_\varphi (S) = \left\{ {x \in [0,1):{\rm A}\left( {\frac{1} {{\varphi (n)}}\sum\limits_{k = 1}^n {\log a_k (x)} } \right)_{n = 1}^\infty = S} \right\},   相似文献   

8.
We consider semilinear partial differential equations in ℝ n of the form
$ \sum\limits_{\frac{{|\alpha |}} {m} + \frac{{|\beta |}} {k} \leqslant 1} {c_{\alpha \beta } x^\beta D_x^\alpha u = F(u)} , $ \sum\limits_{\frac{{|\alpha |}} {m} + \frac{{|\beta |}} {k} \leqslant 1} {c_{\alpha \beta } x^\beta D_x^\alpha u = F(u)} ,   相似文献   

9.
In this paper, the sharp estimates of all homogeneous expansions for f are established, where f(z) = (f 1(z), f 2(z), …, f n (z))′ is a k-fold symmetric quasi-convex mapping defined on the unit polydisk in ℂ n and
$ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered} $ \begin{gathered} \frac{{D^{tk + 1} + f_p \left( 0 \right)\left( {z^{tk + 1} } \right)}} {{\left( {tk + 1} \right)!}} = \sum\limits_{l_1 ,l_2 ,...,l_{tk + 1} = 1}^n {\left| {apl_1 l_2 ...l_{tk + 1} } \right|e^{i\tfrac{{\theta pl_1 + \theta pl_2 + ... + \theta pl_{tk + 1} }} {{tk + 1}}} zl_1 zl_2 ...zl_{tk + 1} ,} \hfill \\ p = 1,2,...,n. \hfill \\ \end{gathered}   相似文献   

10.
This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation the first partial dervative of u to t ,the second the third +α the second partial dervative of u to x ,the second the third +β the third partial dervative of u to x ,the second the thire +γ the fifth partial dervative of u to x = 0,(x,t)∈R^2.We first establish several Strichartz type estimates for the fundamental solution of the corresponding linear problem. Then we apply such estimates to prove local and global existence of solutions for the initial value problem of the modified nonlinear Karahara equation. The results show that a local solution exists if the initial function uo(x) ∈ H^s(R) with s ≥ 1/4, and a global solution exists if s ≥ 2.  相似文献   

11.
In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem:
$ \pi (x) = \frac{q} {{q - 1}}\frac{x} {{\log _q x}} + \frac{q} {{(q - 1)^2 }}\frac{x} {{\log _q^2 x}} + O\left( {\frac{x} {{\log _q^3 x}}} \right),x = q^n \to \infty $ \pi (x) = \frac{q} {{q - 1}}\frac{x} {{\log _q x}} + \frac{q} {{(q - 1)^2 }}\frac{x} {{\log _q^2 x}} + O\left( {\frac{x} {{\log _q^3 x}}} \right),x = q^n \to \infty   相似文献   

12.
By the Fourier method a solution of the equation
  相似文献   

13.
The Euler-Knopp transformation is considered in terms of the problems of regularity and acceleration of the rate of convergence. The object of study is the hypergeometric series
$ _n F_{n - 1} (a;b;z) = \sum\limits_{k = 0}^\infty {\frac{{(a_1 )_1 \cdots (a_n )_k }} {{(b_1 )_k \cdots (b_{n - 1} )_k }}} \frac{{z^k }} {{k!}} = \sum\limits_{k = 0}^\infty {\lambda _k z^k } . $ _n F_{n - 1} (a;b;z) = \sum\limits_{k = 0}^\infty {\frac{{(a_1 )_1 \cdots (a_n )_k }} {{(b_1 )_k \cdots (b_{n - 1} )_k }}} \frac{{z^k }} {{k!}} = \sum\limits_{k = 0}^\infty {\lambda _k z^k } .   相似文献   

14.
The main purpose of this paper is to study the hybrid mean value of $ \frac{{L'}} {L}(1,\chi ) $ \frac{{L'}} {L}(1,\chi ) and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value $ \sum\limits_{\chi \ne \chi _0 } {|\tau (\chi )||\frac{{L'}} {L}(1,\chi )|^{2k} } $ \sum\limits_{\chi \ne \chi _0 } {|\tau (\chi )||\frac{{L'}} {L}(1,\chi )|^{2k} } of $ \frac{{L'}} {L} $ \frac{{L'}} {L} and Gauss sums will be proved using analytic methods and estimates for trigonometric sums.  相似文献   

15.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

16.
We consider a new Sobolev type function space called the space with multiweighted derivatives $ W_{p,\bar \alpha }^n $ W_{p,\bar \alpha }^n , where $ \bar \alpha $ \bar \alpha = (α 0, α 1,…, α n ), α i ∈ ℝ, i = 0, 1,…, n, and $ \left\| f \right\|W_{p,\bar \alpha }^n = \left\| {D_{\bar \alpha }^n f} \right\|_p + \sum\limits_{i = 0}^{n - 1} {\left| {D_{\bar \alpha }^i f(1)} \right|} $ \left\| f \right\|W_{p,\bar \alpha }^n = \left\| {D_{\bar \alpha }^n f} \right\|_p + \sum\limits_{i = 0}^{n - 1} {\left| {D_{\bar \alpha }^i f(1)} \right|} ,
$ D_{\bar \alpha }^0 f(t) = t^{\alpha _0 } f(t),D_{\bar \alpha }^i f(t) = t^{\alpha _i } \frac{d} {{dt}}D_{\bar \alpha }^{i - 1} f(t),i = 1,2,...,n $ D_{\bar \alpha }^0 f(t) = t^{\alpha _0 } f(t),D_{\bar \alpha }^i f(t) = t^{\alpha _i } \frac{d} {{dt}}D_{\bar \alpha }^{i - 1} f(t),i = 1,2,...,n   相似文献   

17.
The asymptotic expansion of the heat kernel Θ(t)=sum from ∞to j=1 exp(-tλ_j) where {λ_j}_(j=1)~∞are the eigen-values of the negative Laplacian -Δ_n=-sum from n to k=1((?))~2 in R~n(n=2 or 3) is studied for short-time t for a generalbounded domain Ωwith a smooth boundary (?)Ω.In this paper,we consider the case of a finite number of theDirichlet conditions φ=0 on Γ_i (i=1,...,J) and the Neumann conditions (?)=0 on Γ_i (i=J 1,...,k) andthe Robin conditions ((?) γ_i)φ=0 on Γ_i (i=k 1,...,m) where γ_i are piecewise smooth positive impedancefunctions,such that (?)Ωconsists of a finite number of piecewise smooth components Γ_i(i=1,...,m) where(?)Ω=(?)Γ_i.We construct the required asymptotics in the form of a power series over t.The senior coefficients inthis series are specified as functionals of the geometric shape of the domain Ω.This result is applied to calculatethe one-particle partition function of a“special ideal gas”,i.e.,the set of non-interacting particles set up in abox with Dirichlet,Neumann and Robin boundary conditions for the appropriate wave function.Calculationof the thermodynamic quantities for the ideal gas such as the internal energy,pressure and specific heat revealsthat these quantities alone are incapable of distinguishing between two different shapes of the domain.Thisconclusion seems to be intuitively clear because it is based on a limited information given by a one-particlepartition function;nevertheless,its formal theoretical motivation is of some interest.  相似文献   

18.
The inequality plays an important role in Fourier analysis and approximation theory. It has recently been generalized by Telyakovskii and Leindler. This paper further generalizes and improves their results by introducing a new class of sequences called γ-piecewise bounded variation sequence (γ-PBVS).  相似文献   

19.
AIn this paper, the author obtains the following results:(1) If Taylor coeffiients of a function satisfy the conditions:(i),(ii),(iii)A_k=O(1/k) the for any h>0 the function φ(z)=exp{w(z)} satisfies the asymptotic equality the case h>1/2 was proved by Milin.(2) If f(z)=z α_2z~2 …∈S~* and,then for λ>1/2  相似文献   

20.
Let $ \mathbb{B} $ \mathbb{B} be the unit ball in ℂ n and let H($ \mathbb{B} $ \mathbb{B} ) be the space of all holomorphic functions on $ \mathbb{B} $ \mathbb{B} . We introduce the following integral-type operator on H($ \mathbb{B} $ \mathbb{B} ):
$ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B}, $ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B},   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号