首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present work describes the field emission characteristics of conducting polymer coated multi walled carbon nanotubes (MWNTs) field emitters fabricated over flexible graphitized carbon cloth. Nanocomposites involving the combination of MWNTs and conducting polymers polyaniline (PANI) and polypyrrole (PPy) have been prepared by in-situ polymerization method and have been characterized using scanning electron microscopy and transmission electron microscopy. Using spin coating method, field emitters based on PANI/MWNTs and PPy/MWNTs over flexible graphitized carbon cloth have been prepared. The field emission characteristics have been studied using an indigenously fabricated set up in a vacuum chamber with a base pressure of 2 × 10−5 Pa and the results are discussed. Our results display that the field emission performance of the emitters depends strongly on the work function of the emitting material. Low turn on emission field of 2.12 V/μm at 10 μA/cm2 and high emission current density of 1 mA/cm2 at 3.04 V/μm have been observed for PANI/MWNTs field emitter.  相似文献   

2.
The initial field electron emission degradation behaviour of original nano-structured sp^2-bonded amorphous carbon films has been observed, which can be attributed to the increase of the work function of the film in the field emission process analysed using a Fowler-Nordheim plot. The possible reason for the change of work function is suggested to be the desorption of hydrogen from the original hydrogen termination film surface due to field emission current-induced local heating. For the explanation of the emission degradation behaviour of the nano-structured sp2-bonded amorphous carbon film, a cluster model with a series of graphite (0001) basal surfaces has been presented, and the theoretical calculations have been performed to investigate work functions of graphite (0001) surfaces with different hydrogen atom and ion chemisorption sites by using first principles method based on density functional theory-local density approximation.  相似文献   

3.
It has been shown that the deposition of cesium atoms on multi-wall carbon nanotubes abruptly increases the current of the field electron emission, decreases the threshold electric field by a factor of three (to 0.8 V/m), and decreases the work function to 2.1–2.3 eV. It has been found that the flowing of the large emission current I ≥ 2 × 10?6 A leads to a change in the current-voltage characteristics and a decrease in the emission current. This effect has been explained by escape of cesium atoms from the tips of most nanotubes into the nanotube depth due to desorption or intercalation. At the same time, the low work function is retained for some nanotubes, probably, due to the stronger bonding of Cs atoms with these nanotubes.  相似文献   

4.
The present work describes the field emission characteristics of nanoscale magnetic nanomaterial encapsulated multi-walled carbon nanotubes (MWNTs) fabricated over flexible graphitized carbon cloth. Ni/MWNTs, NiFe/MWNTs and NiFeCo/MWNTs have been synthesized by catalytic chemical vapor decomposition of methane over Mischmetal (Mm)-based AB3 (MmNi3, MmFe1.5Ni1.5 and MmFeCoNi) alloy hydride catalysts. Metal-encapsulated MWNTs exhibited superior field emission performance than pure MWNT-based field emitters over the same substrate. The results indicate that a Ni-filled MWNT field emitter is a promising material for practical field emission application with a lowest turn-on field of 0.6 V/μm and a high emission current density of 0.3 mA/cm2 at 0.9 V/μm.  相似文献   

5.
悬浮区域熔炼法制备LaB6单晶体与发射性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
包黎红  张久兴  周身林  张宁 《物理学报》2011,60(10):106501-106501
采用区域熔炼法成功制备出了高质量,高纯度,大尺寸的LaB6单晶体. 系统分析了制备过程中每个参数对LaB6单晶生长的影响,确定了晶体生长最佳工艺为:样品转速为30 r/min,生长速度为8-10 mm/h. 分析了单晶LaB6 (100) 晶面的热电子发射性能,结果表明,当阴极温度为1873 K时,最大热发射电流密度为44.36 A/cm2;利用 Richardson 直线法求出了绝对零度逸出功和有效逸出功分别为1.99和2.59 eV. 场发射测试结果表明,单晶LaB6场发射单尖最大场发射电流密度达到4.9×106 A/cm2,场发射因子为41500 cm-1,表现出良好的场发射性能. 因此单晶LaB6作为热阴极和冷阴极都具有很广阔的应用前景. 关键词: 区域熔炼法 6')" href="#">单晶LaB6 热发射性能 场发射性能  相似文献   

6.
Photoemission from polycrystalline diamond films irradiated with the harmonics of a Nd:YAG laser indicates that the amorphous or quasi-amorphous zones (patches) of sp2-C on the external surface of the diamond grains make a dominant contribution to the emission yield. This is deduced from: (a) the strong reduction of the yield as a consequence of the partial removal of amorphous carbon (a-C) patches by etching with acid and (b) the correlation between the yield and the a-C content determined by Raman spectroscopy. The junction between the a-C patches and the diamond determines a configuration of the energy bands, which allows one-photon emission with an energy of 4.7 eV (4th harmonic). We have measured samples with variable a-C content and found an efficient emission, with values of quantum efficiency on the order of 10-6. A phenomenological picture of the electron emission process leads us to locate it at the a-C–diamond–vacuum triple border. This indicates a high local efficiency and suggests that a diamond film with an appropriate distribution of a-C patches on the surface could be a very efficient material. Moreover it could work in moderate vacuum and have a high laser-radiation damage-threshold. Such a material would therefore be interesting as a robust photocathode . PACS 79.60.-i; 81.05.Uw; 81.15.Gh  相似文献   

7.
The field emission characteristics of a single micro-bundle of single-walled carbon nanotubes (SWCNTs) were investigated using field emission microscopy (FEM). Fowler–Nordheim plots revealed that the work function of the SWCNTs was reduced with increasing heating temperature, and reached a minimum value around 1000 °C, assuming that the β factor was constant during the heating process. Field emission patterns also demonstrated fine structures that were believed to be images of the cap of a SWCNT, which was in a clean state. The radius of the SWCNT micro-bundle was measured by transmission electron microscopy (TEM), and the β factor was calculated using two empirical formulae. Then, the work function of the SWCNT was determined from the slope, K, of its Fowler–Nordheim plot. The work function values were Φ1=4.76 eV and Φ2=4.88 eV, respectively. Received: 26 October 2001 / Revised version: 19 February 2002 / Published online: 6 June 2002  相似文献   

8.
A patterned array of diamond-like carbon (DLC) was grown on anodic aluminum oxide (AAO) template by filtered cathodic arc plasma (FCAP) technique at room temperature. The diameters of patterned array of DLC were ∼150 nm, and the patterned array density was estimated to ∼109 cm−2. A broad asymmetric band ranging from 1000 cm−1 to 2000 cm−1 was detected by Raman spectrum attributed to characteristic band of DLC. The fraction of sp3 bonded carbon atoms of the patterned array of DLC was measured by X-ray photoelectron spectrum (XPS) and the ratio was about 62.4%. Field emission properties of the patterned array of DLC were investigated. A low turn-on field of 3.4 V/μm at 10 μA/cm2 with an emission area of 3.14 mm2 was achieved. The results indicated that the electrons were emitted under both the effect of enhanced field because of the geometry and the work function of the DLC sample. Based on Fowler-Nordheim plot, the values of work function for the patterned array of DLC were estimated in range of 0.38 to 1.75 from a linearity plot.  相似文献   

9.
Carbon nanotubes with uniform density were synthesized on carbon fiber substrate by the floating catalyst method. The morphology and microstructure were characterized by scanning electron microscopy and Raman spectroscopy. The results of field emission showed that the emission current density of carbon nanotubes/carbon fibers was 10 μA/cm2 and 1 mA/cm2 at the field of 1.25 and 2.25 V/μm, respectively, and the emission current density could be 10 and 81.2 mA/cm2 with the field of 4.5 and 7 V/μm, respectively. Using uniform and sparse density distribution of carbon nanotubes on carbon fiber substrate, the tip predominance of carbon nanotubes can be exerted, and simultaneously the effect of screening between adjacent carbon nanotubes on field emission performance can also be effectively decreased. Therefore, the carbon nanotubes/carbon fibers composite should be a good candidate for a cold cathode material.  相似文献   

10.
Surface structure, composition, and some field-electron emission properties are examined for thermally annealed titanium carbide emitters. As a result of high temperature heating, low-index planes of {100} and {111} become facetted and are observed as dark areas in field-electron emission patterns. Electrons are emitted predominantly from the {110} planes. The surface composition becomes enriched with carbon when the carbon deficient titanium carbide, TiC0.71, is heated at high temperatures in vacuum better than 10?7 Pa. The topmost (110) layer consists of both Ti and C atoms. The instability in the electron emission current of titanium carbide is considered to be due to the local work function change caused by an interaction between vacuum residual gases and chemically active titanium atoms on the emitter surface.  相似文献   

11.
Layers of oriented carbon nanotubes and nanometer-size plate-shaped graphite crystallites are obtained by chemical vapor deposition in a glow-discharge plasma. A structural-morphological investigation of a carbon material consisting of nanotubes and nanocrystallites is performed, and the field-emission properties of the material are also investigated. It is shown that electron field emission is observed in an electric field with average intensity equal to or greater than 1.5 V/μm. The low fields giving rise to electron emission can be explained by a decrease in the electronic work function as a result of the curvature of the atomic layers of graphitic carbon. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 5, 381–386 (10 March 1999)  相似文献   

12.
Awl-shaped diamond-like carbon (DLC) was directly grown on anodic aluminum oxide (AAO) template by using filtered cathodic arc plasma (FCAP) technique at room temperature. The awls of DLC were about 250 nm in the height and the diameters of the awls were ∼100 nm at the top. The awl density was estimated to be ∼108 cm−2. A broad asymmetric band ranging from 1100 to 1800 cm−1 was detected by Raman spectrum. This asymmetric band was characteristic band of DLC. The sp3/(sp3+sp2) ratio of C-C bond of the awl-shaped DLC was measured by X-ray photoelectron spectrum, and it was about 68.3%. Field-emission properties of the awl-shaped DLC were investigated. A low turn-on field of 2.6 V/μm at 10 μA/cm2 with an emission area of 3.14 mm2 was achieved, and the emission current stability was very good. The results indicated that the electrons were emitted under both the effect of enhanced field because of the geometry and the work function of the DLC sample. Based on Fowler-Nordheim plot, the values of work function for the awl-shaped DLC were estimated in ranges of 0.23-1.08 from a linearity plot.  相似文献   

13.

The effect of cesium and potassium atoms deposited onto multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics was studied. The current–voltage characteristics of the field electron emission of specimens with cesium or potassium doped multiwalled carbon nanotubes of this type were revealed to retain their linear character in the Fowler–Nordheim coordinates within several orders of magnitude of change in the emission current. The deposition of cesium and potassium atoms was shown to lead to a considerable increase in the emission current and a decrease in the work function φ of studied emitters with multiwalled nanotubes. The work function was established to decrease to φ ~ 3.1 eV at an optimal thickness of coating with cesium atoms and to φ ~ 2.9 eV in the case of doping with potassium atoms. Cesium and potassium deposition conditions optimal for the attainment of a maximum emission current were found.

  相似文献   

14.
The work function was measured in a vacuum of 10−5 Torr for magnesia incorporated lanthanum chromite based ceramic designated LC2OM. The results obtained are φ R =2.75eV andA R =0.11 A/cm2 K2 which ensure that LC2OM has favourable electron emission characteristics for MHD hot electrode material. The measurements have been carried out in the temperature range from ambient to 1700 K. Chemistry Division  相似文献   

15.
Our theoretical studies using methods of electron density functional theory show that hydrogen, fluorine, and oxygen impurities must be present in the chamber during the synthesis of linear-chain carbon to form and stabilize experimentally observed kinks in carbon chains. The kink in the carbon chain forms during the adsorption of impurity atoms onto the chain. It is shown that it is energetically advantageous for impurity atoms to form kinks rather than to occupy other adsorption positions. The optimal kink angle of carbon chains is determined. The stability of bent carbon chains is estimated as a function of the length of linear fragments. It is shown that the formation of kinks leads to that the formation of a narrow band gap near the Fermi level: E gH = 0.56 eV, E gF = 0.59 eV, and E gO = 1.04 eV.  相似文献   

16.
The structure of amorphous linear-chain carbon (LCC) during the structure formation under conditions of vacuum annealing was studied by electron diffraction and Raman spectroscopy methods. It was shown that the determining factor of lowering the work function of the LCC coating is the formation of nanoclusters of mutually misoriented short carbon chains.  相似文献   

17.
The plasma produced by laser ablation of a graphite target was studied by means of optical emission spectroscopy and a Langmuir planar probe. Laser ablation was performed using a Nd:YAG laser with emission at the fundamental line with pulse length of 28 ns. In this work, we report the behavior of the mean kinetic energy of plasma ions and the plasma density, as a function of the laser fluence (J/cm2), and the target to probe (substrate) distance. The characterized regimes were employed to deposit amorphous carbon at different values of kinetic energy of the ions and plasma density. The mean kinetic energy of the ions could be changed from 40 to 300 eV, and the plasma density could be varied from 1 × 1012 to 7 × 1013 cm−3. The main emitting species were C+ (283.66, 290.6, 299.2 and 426.65 nm) and C++ (406.89 and 418.66 nm) with the C+ (426.65 nm) being the most intense and that which persisted for the longest times. Different combinations of the plasma parameters yield amorphous carbon with different structures. Low levels (about 40 eV) of ion energy produce graphitic materials, while medium levels (about 200 eV) required the highest plasma densities in order to increase the CC sp3 bonding content and therefore the hardness of the films. The structure of the material was studied by means of Raman spectroscopy, and the hardness and elastic modulus by depth sensitive nanoindentation.  相似文献   

18.
秦玉香  胡明 《物理学报》2008,57(6):3698-3702
通过在碳纳米管(CNTs)表面沉积钛薄膜并经过高温真空退火处理,在CNTs表面形成了低功函数的钛碳化物.研究了钛碳化物改性CNTs的场发射性能,并利用X射线光电子能谱(XPS)对改性碳管进行了结构表征.实验结果表明,高温真空退火可使沉积在CNTs表面的钛原子与碳原子发生化学反应生成钛碳化物;经钛碳化物改性处理的CNTs的场发射性能明显改善,开启电场由改性前的121降低到104V/μm,当电场强度为234V/μm时,场发射电流密度由改性前的23增大到改性后的13.5mA/cm2,同时,CNTs的表面抗离子轰击能力增强,发射稳定性改善.对钛碳化物改性增强CNTs薄膜场发射性能的机理进行了分析. 关键词: 碳纳米管 钛碳化物 场发射 结构表征  相似文献   

19.
将单根多壁碳纳米管(multi-walled carbon nanotube,MWCNT)组装在W针尖上并送入超高真空场发射/场离子显微镜(Ultrahigh Vacuum Field-emission/Field-Ion microscope,UHV-FEM/FIM)进行场蒸发及场发射研究.结果表明,场蒸发可以降低MWCNT的逸出功,从而增强其场发射能力.估算MWCNT的蒸发场低于1.3×108V·cm-1,且在此场强下的平均蒸发速率为9.4nm·min-1.定性讨论了MWCNT的蒸发场大大低于C的理论值的原因.首先,通过场解吸获得的清洁端口上有较多悬挂键,平均每个C原子的配位数较小,所以升华热较低.其次,可能存在于MWCNT中的H原子会在强场下碰撞端口的C原子,使其更易蒸发.以上结果显示了利用场蒸发剪短碳纳米管从而改善其场发射特性的可行性. 关键词: 碳纳米管 场蒸发 场发射  相似文献   

20.
Amorphous carbon thin films were deposited by laser ablation of a graphite target, using the fundamental line of a 5 ns Nd:YAG laser. Deposition was carried out as a function of the plasma parameters (mean kinetic ion energy and plasma density), determined by means of a planar probe. In the selected working regimes the optical emission from the plasma is mainly due to atomic species, namely C+ (426.5 nm); however, there is also emission from other atomic species and molecular carbon. The hardness and resistivity could be varied in the range between 10 and 25 GPa, and 108 and 1011 Ω cm, respectively. The maximum values were obtained at a 200 eV ion energy and 6×1013 cm−3 plasma density, where the maximum quantity of C–C sp3 bonds was formed, as confirmed by Raman spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号