首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Traditionally, Fourier spectroscopic imaging is associated with a small k-space coverage which leads to truncation artifacts such as "bleeding" and ringing in the resultant image. Because substantial truncation artifacts mainly arise from regions having intense signals, such as the subcutaneous lipid in the head, effective reduction of truncation artifacts can be achieved by obtaining an extended k-space coverage for these regions. In this paper, a hybrid technique which employs phase-encoded spectroscopic imaging (SI) to cover the central portion of the k-space and echo-planar spectroscopic imaging (EPSI) to measure the peripheral portion of the k-space is developed. EPSI, despite its inherently low SNR characteristics, provides a sufficient SNR for outer high-spatial frequency components of the aforementioned high signal regions and supplies an extended k-space coverage of these regions for the reduction of truncation artifacts. The data processing includes steps designed to remove inconsistency between the two types of data and a previously described technique for selectively retaining only outer k-space information for the high signal regions during the reconstruction. Experimental studies, in both phantoms and normal volunteers, demonstrate that the hybrid technique provides significant reduction in truncation artifacts.  相似文献   

4.
5.
Since 1982, a number of techniques have been introduced for the purpose of reducing motion artifacts in magnetic resonance imaging. These are reviewed with an emphasis on effectiveness and clinical practicality. Physical restraints, data averaging, and gradient moment nulling are widely used at present. Fast imaging techniques, particularly with the advent of saturation pulses (to diminish arterial and venous pulsation artifacts), may be utilized in the future to obtain diagnostic quality abdominal and pelvic images during breath holding.  相似文献   

6.
Truncation artifacts arise in magnetic resonance spectroscopic imaging (MRSI) of the human brain due to limited coverage of k-space necessitated by low SNR of metabolite signal and limited scanning time. In proton MRSI of the head, intense extra-cranial lipid signals “bleed” into brain regions, thereby contaminating signals of metabolites therein. This work presents a data acquisition strategy for reducing truncation artifact based on extended k-space coverage achieved with a dual-SNR strategy. Using the fact that the SNR in k-space increases monotonically with sampling density, dual-SNR is achieved in an efficient manner with a dual-density spiral k-space trajectory that permits a smooth transition from high density to low density. The technique is demonstrated to be effective in reducing “bleeding” of extra-cranial lipid signals while preserving the SNR of metabolites in the brain.  相似文献   

7.
ObjectivesTo assess the clinical utility of a prototype sequence for metal artifact reduction, the multiacquisition variable–resonance image combination selective (MAVRIC-SL) at 3 T. This sequence allows a surgical prosthesis-dependent reduction in the number of spectral bins. We compared the prototype MAVRIC SL to the conventional two-dimensional fast spin-echo (FSE) sequences and MAVRIC SL images acquired with all spectral bins to those acquired with the optimized number of spectral bins.MethodsMAVRIC SL images were acquired in 25 image sets from August 2017 to April 2018. For each subject, the optimized number of spectral bins was determined using a short spectral calibration scan. The image sets obtained with magnetic resonance imaging that were used for the analysis consisted of MAVRIC-SL proton density (PD)-weighted or short inversion time inversion recovery (STIR) images acquired with all 24 spectral bins, the corresponding images with the optimized number of spectral bins, and the conventional two-dimensional FSE or STIR PD-weighted images. A musculoskeletal radiologist reviewed and scored the images using a five-point scale for artifact reduction around the prosthesis and visualization of the prosthesis and peri-prosthetic tissues. Quantitative evaluation of the peri-prosthetic tissues was also performed. The Wilcoxon rank-sum test was used to test for significance.ResultsThe MAVRIC SL images enabled a significantly improved reduction in metallic artifacts compared to the conventional two-dimensional FSE sequences. The optimized number of spectral bins ranged from 6 to 20, depending on the prosthesis susceptibility difference, size, and orientation to the B0 field. The scan times significantly decreased with a reduced number of spectral bins (354.0 ± 139.1 versus 283.0 ± 89.6 s; 20% reduced scan time; p < .05). Compared to the MAVRIC SL images acquired with all 24 bins, the artifact reduction and visualization of the prosthesis and peri-prosthetic tissues on the MAVRIC SL images acquired with calibrated bins were not significantly different.ConclusionsCompared to the MAVRIC SL images acquired with all 24 spectral bins, those acquired with an optimized number of spectral bins can reduce metallic artifacts with no significant image quality degradation while providing reduced scan time.  相似文献   

8.
ObjectiveDiffusion-weighted imaging (DWI) in the liver suffers from signal loss due to the cardiac motion artifact, especially in the left liver lobe. The purpose of this work was to improve the image quality of liver DWI in terms of cardiac motion artifact reduction and achievement of black-blood images in low b-value images.Material and methodsTen healthy volunteers (age 20–31 years) underwent MRI examinations at 1.5 T with a prototype DWI sequence provided by the vendor. Two diffusion encodings (i.e. waveforms), monopolar and flow-compensated, and the b-values 0, 20, 50, 100, 150, 600 and 800 s/mm2 were used. Two Likert scales describing the severity of the pulsation artifact and the quality of the black-blood state were defined and evaluated by two experienced radiologists. Regions of interest (ROIs) were manually drawn in the right and left liver lobe in each slice and combined to a volume of interest (VOI). The mean and coefficient of variation were calculated for each normalized VOI-averaged signal to assess the severity of the cardiac motion artifact. The ADC was calculated using two b-values once for the monopolar data and once with mixed data, using the monopolar data for the small and the flow-compensated data for the high b-value. A Wilcoxon rank sum test was used to compare the Likert scores obtained for monopolar and flow-compensated data.ResultsAt b-values from 20 to 150 s/mm2, unlike the flow-compensated diffusion encoding, the monopolar encoding yielded black blood in all images with a negligible signal loss due to the cardiac motion artifact. At the b-values 600 and 800 s/mm2, the flow-compensated encoding resulted in a significantly reduced cardiac motion artifact, especially in the left liver lobe, and in a black-blood state. The ADC calculated with monopolar data was significantly higher in the left than in the right liver lobe.ConclusionIt is recommendable to use the following mixed waveform protocol: Monopolar diffusion encodings at small b-values and flow-compensated diffusion encodings at high b-values.  相似文献   

9.
The Motion Artifact Suppression Technique (MAST) is a method which uses a series of gradient echos that are computed to cancel velocity, acceleration and pulsatility components of involuntary motion in MR imaging. A total of 916 patient studies were performed over a nine month period using MAST sequences with a TE 40, 60, 80, 100, 120, and 26/112. There was considerable improvement in long TR, long TE images. Cerebrospinal fluid flow artifacts were reduced. Body and spine images had reduced flow and respiratory artifacts. Spin rephasing in blood vessels caused increase intraluminal signal. This might be useful for cardiovascular imaging.  相似文献   

10.
The presence of metallic compounds in facial cosmetics and permanent tattoos may affect the quality of magnetic resonance imaging. We report a case study describing a signal artifact due to the use of a leave-on powdered hair dye. On reviewing the ingredients of the product, it was found to contain several metallic compounds. In lieu of this observation, we suggest that MRI centers include the use of metal- or mineral-based facial cosmetics or hair products in their screening protocols.  相似文献   

11.
Patient motion during data acquisition in magnetic resonance imaging causes artifacts in the reconstructed image, which for two-dimensional Fourier transform imaging techniques appear as blurring and ghost repetitions of the moving structures. While the problem with intra-view effects has been effectively addressed using gradient moment nulling techniques, there is no corresponding technique for inter-view effects with equal effectiveness and general applicability. A number of techniques have been proposed for correcting the inter-view effects, and these may be divided into those that minimise the corruption of the data, and those that post-process the data to restore the image. The techniques in the former category are briefly reviewed, then those in the latter category are examined in detail. These are analysed in terms of motion model, model parameter estimation, and data correction.  相似文献   

12.
13.
14.
The first step in quantitative pharmacokinetic modeling is to determine the arterial input function (AIF) by deriving the contrast medium (CM) concentration from an appropriate imaging sequence by monitoring changes in either the amplitude or the phase signal of an accommodative artery. The bolus passage is best detected on T2- or T2*-weighted images, while extravasation is best assessed on T1-weighted images. Here, an imaging sequence is used that employs a parallel acquisition technique for the interleaved acquisition of an inversion-prepared T1-weighted image and a T1/T2*-mixed-weighted image for determination of the AIF.

The sequence was applied in six patients with prostate cancer. A method is presented for quantifying the AIF derived from the signal intensity-time courses of both the T1/T2*-mixed-weighted and the T1-weighted image. Furthermore, in some patients the signal intensity-time course of the T1-weighted image exhibits flow-induced signal modulations. To reduce the effect of this flow-related signal enhancement the corresponding phase information was used.

The sequence presented here has the potential to improve the quantification of the AIF at all time points and pharmacokinetic modeling of the CM dynamics of the prostate.  相似文献   


15.
It is well recognised that metals, especially iron, will cause artifacts in magnetic resonance (MR) images. Hitherto it has not been recognised that some facial cosmetics contain magnetic materials, in sufficient quantities to cause artifacts. We report a case of a 25-year-old female who had MR images of her orbits made while wearing mascara eye makeup. The resultant images showed distortion of the signal over the anterior aspect of both eyes. Examination following the removal of the eye makeup resulted in the acquisition of normal images. The typical ingredients of mascara are natural and synthetic waxes, glycerine, water, kaolin, preservatives, polymer film formers and pigments. A wide range of pigments may be used, especially iron oxide, which is a constituent of both brown and blue mascara. In addition it is likely that a number of mascaras will be contaminated with heavy metals. As a result of this observation we now ensure that all patients who are undergoing MR imaging of the head, remove all facial cosmetics as well as any jewelry prior to imaging.  相似文献   

16.
17.
The flow effects appear as a change of phase as well as signal intensity in NMR imaging. Since the flow of blood and CSF (cerebrospinal fluid) is pulsatile due to the heart pumping, their velocities are not constant during NMR imaging. This type of velocity fluctuation such as the blood or CSF flow induces irregular flow-dependent phase shifts, which have been one of the main causes of flow artifacts in NMR imaging. In order to reduce the flow artifacts, especially the CSF flow artifacts, a new cardiac cycle ordered phase encoding method is proposed and has been studied. This proposed technique utilizes the cardiac cycle as a precursor for the phase encoding gradients similar to the ROPE (respiratory ordered phase encoding) technique which has been used for respiratory motion artifact reduction. The basic concept and its applications are discussed together with the experimental results obtained with human volunteers using the KAIS 2.0 2.0 T whole-body NMR imaging system.  相似文献   

18.
Recently, a new technique has been demonstrated which effectively refocusses the dephasing effects of spins moving during application of MR imaging gradients. This paper presents an analysis of imaging axes significance in spin dephasing for motion occurring along the slice select, read and phase-encoding directions. A flow phantom under constant flow conditions in all experiments was used to provide complete spin dephasing when "traditional" imaging gradients were used. The MAST technique was used to refocus along various combinations of imaging axes, and variable number of terms from the Taylor expansion of motion along them. Results indicate that motion along any imaging axis can be refocussed effectively when MAST gradients are used along only the slice select and read axis.  相似文献   

19.
Echo planar imaging (EPI) is a fast and non-invasive magnetic resonance imaging technique that supports data acquisition at high spatial and temporal resolutions. However, susceptibility artifacts, which cause the misalignment to the underlying structural image, are unavoidable distortions in EPI. Traditional susceptibility artifact correction (SAC) methods estimate the displacement field by optimizing an objective function that involves one or more pairs of reversed phase-encoding (PE) images. The estimated displacement field is then used to unwarp the distorted images and produce the corrected images. Since this conventional approach is time-consuming, we propose an end-to-end deep learning technique, named S-Net, to correct the susceptibility artifacts the reversed-PE image pair. The proposed S-Net consists of two components: (i) a convolutional neural network to map a reversed-PE image pair to the displacement field; and (ii) a spatial transform unit to unwarp the input images and produce the corrected images. The S-Net is trained using a set of reversed-PE image pairs and an unsupervised loss function, without ground-truth data. For a new image pair of reversed-PE images, the displacement field and corrected images are obtained simultaneously by evaluating the trained S-Net directly. Evaluations on three different datasets demonstrate that S-Net can correct the susceptibility artifacts in the reversed-PE images. Compared with two state-of-the-art SAC methods (TOPUP and TISAC), the proposed S-Net runs significantly faster: 20 times faster than TISAC and 369 times faster than TOPUP, while achieving a similar correction accuracy. Consequently, S-Net accelerates the medical image processing pipelines and makes the real-time correction for MRI scanners feasible. Our proposed technique also opens up a new direction in learning-based SAC.  相似文献   

20.
For a Hanbury Brown and Twiss system, the influence of relative motion between the object and the detection plane on the resolution of second-order intensity-correlated imaging is investigated. The analytical results, which are backed up by experiments, demonstrate that the amplitude and mode of the object's motion have no effect on the second-order intensity-correlated imaging and that high-resolution imaging can be always achieved by using a phase-retrieval method from the diffraction patterns. The use of motion de-blurring imaging for this approach is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号