首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal decomposition of iron(III) benzoate, Fe(C7H5O2)3, and iron(III) fumarate pentahydrate, Fe2(C4H2O4)3 5 H2O, containing uni- and bidentate ligands, respectively, has been investigated at various temperatures for different intervals of time in a static air atmosphere. Thermolysis of these compounds leads directly to the formation of α-Fe2O3 in the case of iron(III) benzoate and Fe3O4 in the case of iron(III) fumarate as the ultimate products, thus without undergoing reduction to the iron(II) state.  相似文献   

2.
Polycrystalline complexes of lanthanide(III) with 4-hydroxy-3-methoxybenzoic acid were obtained as hydrated compounds of general formula Ln(C8H7O4)3?·?nH2O. After slow recrystallization we obtained single crystals of complexes and determined their structures. Praseodymium(III) and neodymium(III) form isostructural dihydrated complexes [Ln(C8H7O4)3(H2O)2], which crystallize in the triclinic system, space group P 1. Sm(III), Eu(III), Gd(III), Ho(III) and Tb(III) compounds are hexahydrates and also crystallize in the triclinic system, space group P 1. Dihydrated compounds form polymeric chains with metal centres linked by oxygen atoms of bridging carboxylates. Each metal ion is coordinated by chelating carboxylic group and two water molecules. Complexes of the second isostructural group form dinuclear units [Ln2(C8H7O4)6(H2O)4]?·?8H2O. Lanthanide(III) ions are linked by oxygen atoms of two chelating–bridging carboxylate groups. In the dimeric structure each metal ion coordinates additionally two chelating carboxylic groups and two water molecules.  相似文献   

3.
New solid compounds of Al(III), Ga(III) and In(III) with chrysin were obtained. Their composition and some physicochemical properties were studied by thermogravimetric analysis, UV-vis, infrared and solid state 13C NMR spectroscopies. Upon heating the hydrated compounds M(C15H9O4)3·nH2O decomposed to the oxides. The structure of the compounds was elucidated on the basis of obtained results.  相似文献   

4.
Oxalates of La(III), Ce(III), Pr(III), Nd(III) and Sm(III) with the hydrazinium cation with the general formulae (N2H5)4Ln2(C2O4)57H2O (Ln=La3+, Ce3+, Pr3+) and N2H5Ln(C2O4)2·3.5H2O (Ln=Nd3+, Sm3+) were synthesized. The thermal decompositions of these compounds take place in three stages: thermal dehydration at 65–100°C, exothermic decomposition of the N2H4 at 230–260°C, and oxidation of the oxalate ion.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
This work presents our data concerning the synthesis and characterization of some Cr(III), Fe(III) and Zr(IV) complexes with substituted (2-hydroxy-4-methoxy-phenyl)-phenyl-methanone - C14H12O3, denoted by (L1). The synthesis of these complex compounds was performed using melted urea as reaction medium. The obtained complexes have been studied by chemical analysis, IR spectroscopy, X-ray diffraction and thermogravimetric analysis. Based on the data resulting from the thermal behaviour of the studied complex compounds, the kinetic parameters of the thermal decomposition reactions have been determined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Complexes of lanthanide(III) (La–Lu) and Y(III) with 1-hydroxy-2-naphthoic acid were obtained as crystalline compounds with a general formula Ln[C10H6(OH)COO]3nH2O:n=6 for La–Tm and Y, n=2 for Yb and n=0 for Lu. IR spectra of the prepared complexes were recorded, and their thermal decomposition in air were investigated. Spectroscopic data suggest that in the coordination of metal-organic ligand only oxygen atoms from the carboxylate group take part. When heated, the complexes decompose to the oxides Ln2O3, CeO2, Pr6O11 and Tb4O7 with intermediate formation of Ln(C11H7O3)(C11H6O3). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Thermal decomposition of Pu(C2O4)2·6H2O, Pu2(C2O4)3·10H2O and Np(C2O4)2 ·6H2O has been studied by using combination of gas chromatography, infrared spectroscopy, spectrophotometry and complex thermal analysis. We also investigated the decomposition of Pu oxalate under its -radiation. The reduction of Pu(IV) to Pu(III) has been confirmed. We found Np(V), which is formed from Np(IV), on the basis of infrared and absorption spectra of the intermediate compounds.  相似文献   

8.
The tartrate monohydrates of Sm(III) and Tb(III), Sm2C12H12O18·H2O and Tb2C12H12O18·H2O, were prepared and characterized on the basis of their elemental analysis and IR spectral studies. The thermal decompositions of these compounds, studied by TG and DSC methods, were found to follow an almost uniform pattern. Decomposition occurs in four steps. The first step involves dehydration, accompanied by partial decomposition to the oxalate, followed by conversion to the carbonate. The ultimate product in each case is the oxide M2O3, whereM=Sm or Tb. Reflectance spectra of the terbium compound were recorded at various stages of decomposition. The kinetics of the first decomposition step was studied by the non-isothermal method. TG and DSC data for this step were analysed for the evaluation of various kinetic parameters. Reasonable values ofE, Z, andΔS + were obtained.α vs. T curves were drawn on the basis of the TG and DSC data. The results suggest that the mechanism involves random nucleation.  相似文献   

9.
Solid state Ln2-L3 compounds, where Ln stands for heavy trivalent lanthanides (terbium to lutetium) and yttrium, and L is tartrate [(C4H4O6)?2] have been synthesized. Simultaneous thermogravimetry and differential thermal analysis, differential scanning calorimetry, X-ray powder diffractometry, infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results provided information concerning the stoichiometry, crystallinity, ligand??s denticity, thermal stability and thermal behaviour of these compounds.  相似文献   

10.
The complexes M[La(C2O4)3]⋅xH2O (x=10 for M=Cr(III) and x=7 forM=Co(III)) have been synthesized and their thermal stability was investigated. The complexes were characterized by elemental analysis, IR, reflectance and powder X-ray diffraction (XRD) studies. Thermal investigations using TG, DTG and DTA techniques in air of chromium(III)tris(oxalato)lanthanum(III)decahydrate, Cr[La(C2O4)3]⋅10H2O showed the complex decomposition pattern in air. The compound released all the ten molecules of water within ∼170°C, followed by decomposition to a mixture of oxides and carbides of chromium and lanthanum, i.e. CrO2, Cr2O3, Cr3O4, Cr3C2, La2O3, La2C3, LaCO, LaCrOx (2<x<3) and C at ∼1000°C through the intermediate formation of several compounds of chromium and lanthanum at ∼374, ∼430 and ∼550°C. Thecobalt(III)tris(oxalato)lanthanum(III)heptahydrate, Co[La(C2O4)3]⋅7H2O becomes anhydrous around 225°C, followed by decomposition to Co3O4, La2(CO3)3 and C at ∼340°C and several other mixture species of cobalt and lanthanum at∼485°C. The end products were identified to be LaCoO3, Co3O4, La2O3, La2C3, Co3C, LaCO and C at ∼ 2>1000°C. DSC studies in nitrogen of both the compounds showed several distinct steps of decomposition along with ΔH and ΔSvalues. IR and powder XRD studies have identified some of the intermediate species. The tentative mechanisms for the decomposition in air are proposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Rare earth cobalties, LnCoO3, can be conveniently prepared by the thermal decomposition of the precursor LnCo(C2O4)3·nH2O (La, Ce, n=9; Pr, Nd, n=8). CeCo(C2O4)3·8H2O, unlike the other oxalato compounds thermally decompose to a mixture of CeO2 and Co3O4. Although LnCoO3are formed from the precursors at a temperature lower than 800°C, thermal analysis of a mixture of La2(C2O4)3·10H2O and CoC2O4·2H2O at 900·C shows the residue containing mainly La2O3 and Co3O4 with a small amount of LaCoO3.  相似文献   

12.
Homopolynuclear complexes of Cu(II) respectively Cr(III) with the glyoxylate dianion, C2H2O4 2-, have been studied in non-isothermal regime in air and nitrogen. The results of the non-isothermal analysis performed for the synthesised complexes, Cu(C2H2O4)·0.5H2O, respectively [Cr2(OH)2(C2H2O4)2(OH2)4]·2H2O, correlated with the results of the IR and TG analysis of the compounds obtained by thermal treatment from the initial complexes and the results of the GLC and XR analysis have led to the establishment of the thermal decomposition mechanisms for the two studied complexes. The decomposition mechanisms confirm the stoichiometric and structural formulae proposed for the two synthesised homopolynuclear complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The paper presents the conditions under which compounds of the commercial herbicides, 2,4-dichlorophenoxyacetic acid (2,4D; C8H6O3Cl2) and 2-(2,4-dichlorophenoxy)-propionic acid (2,4DP; C9H8O3Cl2), with lead(II) and cadmium(II) are formed and the results of the examination of their properties.On the basis of the elemental analysis and Pb and Cd determination, the following molecular formulae for the obtained compounds were proposed: Pb(C8H5O3Cl2)2.H2O, Cd(C8H5O3Cl2)2.2H2O, Pb(C9H7O3Cl2)2·H2O and Cd(C9H7O3Cl2)2·H2O. Water solubility of the synthesized complexes at room temperature was examined. X-ray powder analysis was carried out. The discussion of IR spectra and conductivity data is presented. Thermal decomposition of these compounds in air was studied by TG/MS methods.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

14.
The structure and thermal transformation of bismuth(III) oxohydroxocarboxylates Bi6O4(OH)4(C n H2n − 1O2)6, where (C n H2n − 1O2) is a carboxylate ion and n = 2 (2–9, 11), were studied by X-ray powder diffraction, thermogravimetry, IR spectroscopy, and chemical analysis. The conditions of precipitation of bismuth carboxylates from perchlorate solutions were determined. The compounds have a layered structure and undergo the same phase transformations on heating.  相似文献   

15.
Complexes of lanthanides(III) (La-Lu) and Y(III) with 3,4,5-trihydroxybenzoic acid (gallic acid) were obtained and their thermal decomposition, IR spectra and solubility in water have been investigated. When heated, the complexes with a general formula Ln(C7H5O5)(C7H4O5nH2O (n=2 for La-Ho and Y: n=0 for Er-Lu) lose their crystallization water and decompose to the oxides Ln2O3, CeO2, Pr6O11, and Tb4O7, except of lanthanum and neodymium complexes, which additionally form stable oxocarbonates such as Ln2O2CO3. The complexes are sparingly soluble in water (0.3·10–5–8.3·10–4 mol dm–3).This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

16.
The thermal decomposition of iron(III) succinate, Fe2(C4H4O4)2(OH)2 and iron(III) adipate pentahydrate, Fe2(C6H8O4)3·5 H2O, has been investigated at different temperatures for different time intervals in static air atmosphere using Mössbauer spectroscopy and nonisothermal techniques (DTG-DTA-TG). The reduction of iron(III) to iron(II) species has been observed at 533 K and 563 K in the case of iron(III) succinate and iron(III) adipate, respectively. At higher temperatures, α-Fe2O3 is formed as the final thermolysis product.  相似文献   

17.
Tetraaqua(18‐crown‐6)cerium(III) hexacyanoferrate(III) dihydrate, [Ce(C12H24O6)(H2O)4][Fe(CN)6]·2H2O, and tetraaqua(18‐crown‐6)neodymium(III) hexacyanoferrate(III) dihydrate, [Nd(C12H24O6)(H2O)4][Fe(CN)6]·2H2O, are isomorphous and isostructural in the C2/c space group, where the cations, which contain ten‐coordinate lanthanoid centres, lie across twofold rotation axes and the anions lie across inversion centres. In these compounds, an extensive series of O—H...O and O—H...N hydrogen bonds links the components into a continuous three‐dimensional framework. Triaqua(18‐crown‐6)lanthanoid(III) hexacyanoferrate(III) dihydrate, [Ln(C12H24O6)(H2O)3][Fe(CN)6]·2H2O, where Ln = Sm, Eu, Gd or Tb, are all isomorphous and isostructural in the P space group, as are triaqua(18‐crown‐6)gadolinium(III) hexacyanochromate(III) dihydrate, [Gd(C12H24O6)(H2O)3][Cr(CN)6]·2H2O, and triaqua(18‐crown‐6)gadolinium(III) hexacyanocobaltate(III) dihydrate, [Gd(C12H24O6)(H2O)3][Co(CN)6]·2H2O. In these compounds, there are two independent anions, both lying across inversion centres, and the lanthanoid centres exhibit nine‐coordination; in the crystal structures, an extensive series of hydrogen bonds links the components into a three‐dimensional framework.  相似文献   

18.
The synthesis and characterization of lanthanide(III) citrates with stoichiometries 1:1 and 2:3; [LnL·xH2O] and [Ln2(LH)3·2H2O], Ln=La, Ce, Pr, Nd, Sm and Eu are reported. L stands for (C6O7H5)3? and LH for (C6O7H6)2?. Infrared absorption spectra of both series evidence coordination of carboxylate groups through symmetric bridges or chelation. X-ray powder patterns show the amorphous character of [LnL·xH2O]. The compounds [Ln2LH3·2H2O] are crystalline and isomorphous. Emission spectra of Eu compounds suggest C 2v symmetry for the coordination polyhedron of [LnL·xH2O] and C 4v for [Ln2(LH)3·2H2O]. Thermal analyses (TG-DTG-DTA) were carried out for both series. The thermal analysis patterns of the two series are quite different and both fit in a 4-step model of thermal decomposition, with lanthanide oxides as final products.  相似文献   

19.
Solid complex compounds of Fe(II) and Fe(III) ions with rutin were obtained. On the basis of the elementary analysis and thermogravimetric investigation, the following composition of the compounds was determined: (1) FeOH(C27H29O16)·5H2O, (2) Fe2OH(C27H27O16)·9H2O, (3) Fe(OH)2(C27H29O16)·8H2O, (4) [Fe6(OH)2(4H2O)(C15H7O12)SO4]·10H2O. The coordination site in a rutin molecule was established on the basis of spectroscopic data (UV–Vis and IR). It was supposed that rutin was bound to the iron ions via 4C=O and 5C—oxygen in the case of (1) and (3). Groups 5C–OH and 4C=O as well as 3′C–OH and 4′C–OH of the ligand participate in binding metals ions in the case of (2). At an excess of iron(III) ions with regard to rutin under the synthesis conditions of (4), a side reaction of ligand oxidation occurs. In this compound, the ligands’ role plays a quinone which arose after rutin oxidation and the substitution of Fe(II) and Fe(III) ions takes place in 4C=O, 5C–OH as well as 4′C–OH, 3′C–OH ligands groups. The magnetic measurements indicated that (1) and (3) are high-spin complexes.  相似文献   

20.
In this paper, we describe the synthesis, characterization and thermal behaviour of praseodymium(III) alkanoates. The compounds have the stoichiometry [Pr(C x H2x+1COO)3], where x = 5-19, and were characterized by elemental analysis and infrared spectroscopy. The thermal behaviour was investigated by hot-stage polarizing optical microscopy, DSC and high temperature X-ray diffraction. A highly viscous mesophase M and a smectic A phase were observed for the shorter chain compounds (x = 5-8), whereas only a smectic A phase was observed for the longer chain compounds of this type of metallomesogens. The chain length has a pronounced effect on the transition temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号