首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
The 70 eV electron ionization mass spectra of polycyclic aromatic compounds are characterized by the presence of relatively stable multiply charged molecular ions [M]n+ (n=2–4). When generated from the compounds benzene, napthalene, anthracene, phenanthrene, 2,3-benzanthracene, 1,2-benzanthracene, chrysene, 9,10-benzophenanthrene and pyrene, the relative abundances of the multiply charged ions increase dramatically with the number of rings. These compounds form multiply charged molecular ions (n=2, 3) which undergo unimolecular decompositions indicative of considerable ionic rearrangement. The main charge separation processes observed here [M]2+→m1++m2+, [M]3+˙→m3++m→+m42+) involve, in almost every case, one or more of the products [CH3]+, [C2H3]+˙ and [C3H3]+. This suggests the existence of preferred structures amongst the metastable parent ions. Information on the relative importance of the various fragmentation pathways is presented here along with translational energy release data. Some tentative structural information about the metastable ions has been inferred from the translational energy release on the assumption that the released energy is due primarily to coulombic repulsion within the transition state structure. For the triply charged ions these interpretations have necessitated the use of a coulombic repulsion model which takes account of an extra charge. Vertical ionization energies for the process [M]n++G→[M](n+1)+G+e? (charge stripping) have also been determined where possible for n=1 and 2 and the results from these experiments allow the derivation of simple empirical equations which relate successive ionization energies for the formation of [M]2+ and [M]3+˙ to the appearance energy of [M]+˙.  相似文献   

3.
4.
The one-electron reduction potential of the triplet excited state of C60 is similar to those of some aromatic carbonyl compounds. Thus, photoinduced electron transfer is expected to occur from the common electron donors to both C60 and aromatic carbonyl compounds. In this paper comparison is made between photoinduced electron transfer from organosilanes and organostannanes used as the electron donors to the triplet excited states of C60 and aromatic carbonyl compounds, providing valuable insight into their common mechanistic features for the C-C bond formation via photoinduced electron transfer as well as the new functionalization method of C60.  相似文献   

5.
The first intermolecular reactions of the excited state of a silicon divalent compound (silylene) with benzene derivatives were discovered. Typically, when a benzene solution of an isolable silylene is irradiated with light of wavelengths longer than 420 nm at room temperature, the corresponding silacyclohepta-2,4,6-triene (silepin) is yielded quantitatively. The photochemical insertion of the silylene toward substituted benzenes occurs in general to give the corresponding substituted silepins. The insertion reaction is highly sensitive to the steric hindrance at a reacting C-C double bond in benzene; during the reactions of the silylene with substituted benzenes, only unsubstituted C-C double bonds in the benzene ring reacted selectively. The irradiation of the silylene in the presence of mesitylene afforded the insertion product to a benzylic C-H bond, indicative of the biradical nature of the excited-state silylene.  相似文献   

6.
7.
The salts [Ru(bpy)3](PF6)2, cis-[Ru(bpy)2(py)2](PF6)2, trans-[Ru(bpy)2(4-Etpy)2](PF6)2, [Ru(tpy)2](PF6)2, and [Re(bpy)(CO)3(4-Etpy)](PF6) (bpy=2,2'-bipyridine, py=pyridine, 4-Etpy=4-ethylpyridine, and tpy=2,2':6',2-terpyridine) have been incorporated into poly(methyl methacrylate) (PMMA) films and their photophysical properties examined by both steady-state and time-resolved absorption and emission measurements. Excited-state lifetimes for the metal salts incorporated in PMMA are longer and emission energies enhanced due to a rigid medium effect when compared to fluid CH3CN solution. In PMMA part of the fluid medium reorganization energy, lambdaoo, contributes to the energy gap with lambdaoo approximately 700 cm-1 for [Ru(bpy)3](PF6)2 from emission measurements. Enhanced lifetimes can be explained by the energy gap law and the influence of the excited-to-ground state energy gap, Eo, on nonradiative decay. From the results of emission spectral fitting on [Ru(bpy)3](PF6)2* in PMMA, Eo is temperature dependent above 200 K with partial differentialEo/ partial differentialT=2.8 cm-1/deg. cis-[Ru(bpy)2(py)2](PF6)2 and trans-[Ru(bpy)2(4-Etpy)2](PF6)2 are nonemissive in CH3CN and undergo photochemical ligand loss. Both emit in PMMA and are stable toward ligand loss even for extended photolysis periods. The lifetime of cis-[Ru(bpy)2(py)2](PF6)2* in PMMA is temperature dependent, consistent with a contribution to excited-state decay from thermal population and decay through a low-lying dd state or states. At temperatures above 190 K, coinciding with the onset of the temperature dependence of Eo for [Ru(bpy)3](PF6)2*, lifetimes become significantly nonexponential. The nonexponential behavior is attributed to dynamic coupling between MLCT and dd states, with the lifetime of the latter greatly enhanced in PMMA with tau approximately 3 ns. On the basis of these data and data in 4:1 (v/v) EtOH/MeOH, the energy gap between the MLCT and dd states is decreased by approximately 700 cm-1 in PMMA with the dd state at higher energy by DeltaH0 approximately 1000 cm-1. The "rigid medium stabilization effect" for cis-[Ru(bpy)2(py)2](PF6)2* in PMMA is attributed to inhibition of metal-ligand bond breaking and a photochemical cage effect.  相似文献   

8.
9.
Shizheng Zhu  Ping He 《Tetrahedron》2005,61(23):5679-5685
The thermal decomposition reactions of fluoroalkanesulfonyl azides RfSO2N3 (1) in the presence of various substituted benzene XnC6H6−n [X: CH3 (n=1, 2, 4, 6), OCH3 (n=1, 2), C6H5CH2 (n=1), F, Cl, Br] were studied in detail. The N-aryl fluoroalkanesulfonyl amides [RfSO2NHC6H5−nXn] were produced as the major products. The ortho/para ratio resembled that of an electrophilic aromatic substituted reaction. An ionic π- or σ-complex was postulated as the intermediate for these reactions.  相似文献   

10.
Difluorocarbene generated from the decomposition of fluorosulfonyldifluoroacetic acid (2)reacted with various sodium salts of N-heterocyclic compounds(1) giving the corresponding difluoro-methylated products in acetonitrile at 10—40℃.Benzotriazole(1a),benzimidazole(1b) and imidazole(1c) were converted into 1-(difluoromethyl)benzotriazole(3a),1-(difluoromethyl)benzimidazole(3b) and1-(difluoromethyl)imidazole(3c)respectively.Indole(1d)reacted with 2 to give -(fluorosulfonyldifluoro-acetate)indole(2d) rather than the expected difluoromethylated derivatives.  相似文献   

11.
A bridged d0 zirconocene dichloride is reported as a first group 4 metal complex possessing rare long-lived ligand-to-metal charge transfer (LMCT) excited states with high emission yields and excited-state lifetimes in fluid solutions (e.g., PhiLUM = 0.41 and tau = 17.6 micros in 1,2-dichlorobenzene at 20 degrees C). The basic emission parameters PhiLUM and tau are shown to be extremely solvent-dependent in fluids at room temperature. The first principle dependences of LMCT emission parameters on solvent properties are revealed with use of the target complex. For fluid solutions, the linear correlation between PhiLUM and tau is reported, thus suggesting that a solvent determines the rate constant for nonradiative decay, knr.  相似文献   

12.
The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two π-stacked nucleobase dimers of B-DNA: 5'-GG-3' and 5'-GT-3'. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.  相似文献   

13.
14.
Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.  相似文献   

15.
Confinement of electron donor guests affords an efficient, photo-induced charge transfer (CT) with the anthracene moieties of a porous coordination polymer.  相似文献   

16.
Neighbouring group participation in reactions of chloramine-T with ortho-substituted aryl methyl sulphides and diaryl sulphides has been studied. The reaction is markedly hindered by the steric effect of the ortho substituent of the phenyl ring, but groups having a CO moiety show an anchimeric effect in the following order: o-CH2CO2Me ~ o-CH2CO2H < o-CH2CO2- < o-CO2Me ~ o-CO2H < o-CO2- ? 2o-CO2 in the rate-determining step may be ruled out on the basis of salt and isotope effect. Substituents with neighbouring group participation diminish the yield of sulphilimine in solvents containing water. The electrophilic chlorination of sulphides by TsNHCl may be assumed to be the rate-determining step with the positively charged sulphonium centre stabilized by the negatively polarized or charged carbonyl-oxygen in the transition state. This type of interaction hinders the nucleophilic attack of sulphonamidate ion at the sulphonium centre in the fast product-controlling steps, decreasing the yield of sulphilimine.  相似文献   

17.
Intramolecular charge transfer (ICT) that occurs upon photoexcitation of molecules is a vital process in nature and it has ample applications in chemistry and biology. The ICT process of the excited molecules is affected by several environmental factors including polarity, viscosity and hydrogen bonding. The effect of polarity and viscosity on the ICT processes is well understood. But, despite the fact that hydrogen bonding significantly influences the ICT process, the specific role of hydrogen bonding in the formation and stabilization of the ICT state is not unambiguously established. Some literature reports predicted that the hydrogen bonding of the solvent with a donor promotes the formation of a twisted intramolecular charge transfer (TICT) state. Some other reports stated that it inhibits the formation of the TICT state. Alternatively, it was proposed that the hydrogen bonding of the solvent with an acceptor favors the TICT state. It is also observed that a dynamic equilibrium is established between the free and the hydrogen bonded ICT states. This perspective focuses on the specific role played by hydrogen bonding of the solvent with the donor and the acceptor, and by proton transfer in the ICT process. The utility of such influence in molecular recognition and anion sensing is discussed with a few recent literature examples in the end.  相似文献   

18.
We have attempted to explore mechanistic aspects of the photosensitized ring-cleavage reactions of cis-1,2-diphenylcyclobutane (1), cis-transoid-cis-cyclobutal[1,2-a:4,3-a′] diindene (2) and r-1,c-2-dimethyl-t-3,t-4-di(4-methoxyphenyl)cyclobutane (3) by electron acceptors (A) in acetonitrile. The experimental results demonstrate that the ring cleavage of 1 and 2 occurs as a consequence of the rapid geminate recombination of ion-radical pairs occurring at a rate of well over 109 s−1 without ionic dissociation. In the case of 3, however, the photoreactions proceed by way of a chain-reaction mechanism involving the free cation radical of 3 which undergoes ring cleavage at much less than 107 s−1. The rapid ring cleavage of 1+ and 2+ is attributed to significant perturbations of the cyclobutane ring by the population of positive charge on the orbital array of the two π-electron systems and the cyclobutane-ring σ framework because of strong through-bond couplings. It is presumed that the cyclobutane ring of 3+ is much less distorted since the positive charge is mostly localized on the aryl group. The rapid geminate recombination of the A−−1+ and A−−2+ pairs is discussed in terms of a very efficient transition from the “distorted” and “ring-opened” minima of the A−−−D+ surface to the A–D surface. In the case of 3, this mechanism cannot be expected to operate in the geminate recombination.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号