首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper presents a modified expression for the dissipation rate tensor ij in the second-moment closure models, which employs the dissipation flatness parameterE and the turbulenceRe number. The expression reproduced the distribution among the three diagonal components of ij in agreement with the direct numerical simulation of a plane channel flow ofMansour, Kim and Moin, 1988. Implemented in a low-Re-number differentialRe-stress model the relationship yielded predictions of dissipative components better than other models, albeit spoiled by still unsatisfactory modelling of the equation for the energy dissipation rate . on leave from Mainski Fakultet, University of Sarajevo, Bosnia Hercegovina.  相似文献   

2.
We consider the Schrödinger operator on two types of domains depending on a small parameter : dumbbell domains and thin domains with varying orders of thinness. In both situations we compare the eigenvalues and eigenvectors of the Schrödinger operator with the corresponding eigenvalues and eigenvectors of a limit operator defined on the limit domain.  相似文献   

3.
The rapidly forced pendulum equation with forcing sin((t/), where =<0p,p = 5, for 0, sufficiently small, is considered. We prove that stable and unstable manifolds split and that the splitting distanced(t) in the ( ,t) plane satisfiesd(t) = sin(t/) sech(/2) +O( 0 exp(–/2)) (2.3a) and the angle of transversal intersection,, in thet = 0 section satisfies 2 tan/2 = 2S s = (/2) sech(/2) +O(( 0 /) exp(–/2)) (2.3b) It follows that the Melnikov term correctly predicts the exponentially small splitting and angle of transversality. Our method improves a previous result of Holmes, Marsden, and Scheuerle. Our proof is elementary and self-contained, includes a stable manifold theorem, and emphasizes the phase space geometry.  相似文献   

4.
We study the degenerate bifurcations of the nonlinear normal modes(NNMs) of an unforced system consisting of a linear oscillator weaklycoupled to a nonlinear one that possesses essential stiffnessnonlinearity. By defining the small coupling parameter , we study thedynamics of this system at the limit 0. The degeneracy in the dynamics ismanifested by a 'bifurcation from infinity' where a bifurcation point isgenerated at high energies, as perturbation of a state of infiniteenergy. Another (nondegenerate) bifurcation point is generated close tothe point of exact 1:1 internal resonance between the linear andnonlinear oscillators. The degenerate bifurcation structure can bedirectly attributed to the high degeneracy of the uncoupled system inthe limit 0, whose linearized structure possesses a double zero, and aconjugate pair of purely imaginary eigenvalues. First we construct localanalytical approximations to the NNMs in the neighborhoods of thebifurcation points and at other energy ranges of the system. Then, we`connect' the local approximations by global approximants, and identifyglobal branches of NNMs where unstable and stable mode and inverse modelocalization between the linear and nonlinear oscillators take place fordecreasing energy.  相似文献   

5.
The problem of spherical wave propagation in soil under the action of an intense uniformly decreasing load 0(t) applied to the boundary of a cavity with radius r0 is considered. Soil with a high stress level is modeled either by ideally nonlinearly compressible or elastoplastic material, taking account of linear irreversible unloading for the material. In contrast to [1–7], in order to describe material movement use is made of strain theory [8] with determining functions = (), i=i(i), where , i, , i are the first and second invariants of strain and stress tensors. During material loading these functions are presented in the form of polynomials ()=(i+2¦¦), ii)=(i-2i)i, in which constant coefficients i, i=1, 2) are determined by experiment, taking account of the triaxial stressed state of soil. Solution of the problem is constructed by an analytically reversible method, with prescribed shape for the shock-wave (SW) surface in the form of a second-degree polynomial relating to time t and a numerical method of characteristics for a prescribed arbitrarily decreasing load i(t). On the basis of the analytical equations obtained, calculations are carried out for material parameters (including loading profile) in a computer and stresses and mass velocity of plastic and elastoplastic materials are compared.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 95–100, July–August, 1986.The authors express their sincere thanks to Kh. A. Rakhmatulin for discussing the results of this work.  相似文献   

6.
In this paper, we investigate the interaction of subharmonicresonances in the nonlinear quasiperiodic Mathieu equation,x + [ + (cos 1 t + cos 2 t)] x + x3 = 0.We assume that 1 and that the coefficient of the nonlinearterm, , is positive but not necessarily small.We utilize Lie transform perturbation theory with elliptic functions –rather than the usual trigonometric functions – to study subharmonic resonances associated with orbits in 2m:1 resonance with a respective driver. In particular, we derive analytic expressions that place conditions on (, , 1, 2) at which subharmonic resonance bands in a Poincaré section of action space begin to overlap. These results are used in combination with Chirikov's overlap criterion to obtain an overview of the O() global behavior of equation (1) as a function of and 2 with 1, , and fixed.  相似文献   

7.
Calculations of the three-dimensional boundary layer in an S shaped duct are performed with various – models. Three different near-wall models are used for the – model, of which one is using a new set of near-wall damping functions deduced from direct numerical simulations of turbulent channel flow available in the literature. The results show that it is possible to obtain damping functions giving better agreement, especially for and , with direct simulation data and experiments than with damping functions deduced from trial and error.  相似文献   

8.
The asymptotic behaviour of the TDR step response is compared with the asymptotic behaviour of dielectrics in the frequency domain. For non conducting materials the asymptotic behaviour of the TDR step response appears to be related to the angles of intersection in the Cole-Cole plot. In the case of conducting materials the asymptotic behaviour for t depends on the low frequency conductivity, which suggests a new method of determining this conductivity from TDR experiments. Consequences are discussed for the accuracy of the determination of and from the TDR response obtained experimentally.  相似文献   

9.
On laminar flow through a uniformly porous pipe   总被引:2,自引:0,他引:2  
Numerous investigations ([1] and [4–9]) have been made of laminar flow in a uniformly porous circular pipe with constant suction or injection applied at the wall. The object of this paper is to give a complete analysis of the numerical and theoretical solutions of this problem. It is shown that two solutions exist for all values of injection as well as the dual solutions for suction which had been noted by previous investigators. Analytical solutions are derived for large suction and injection; for large suction a viscous layer occurs at the wall while for large injection one solution has a viscous layer at the centre of the channel and the other has no viscous layer anywhere. Approximate analytic solutions are also given for small values of suction and injection.

Nomenclature

General r distance measured radially - z distance measured along axis of pipe - u velocity component in direction of z increasing - v velocity component in direction of r increasing - p pressure - density - coefficient of kinematic viscosity - a radius of pipe - V velocity of suction at the wall - r 2/a 2 - R wall or suction Reynolds number, Va/ - f() similarity function defined in (6) - u 0() eigensolution - U(0) a velocity at z=0 - K an arbitrary constant - B K Bernoulli numbers Particular Section 5 perturbation parameter, –2/R - 2 a constant, –K - x / - g(x) f()/ Section 6 perturbation parameter, –R/2 - 2 a constant, –K - g() f() - g c ()=g() near centre of pipe - * point where g()=0 Section 7 2/R - 2 K - t (1–)/ - w(t, ) [1–f(t)]/ - 0, 1 constants - g() f()– 0 - 0/ - 0 a constant - * point where f()=0  相似文献   

10.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

11.
12.
Summary The problem considered here is that of the indentation of a semi infinite, inhomogeneous rigid-plastic solid by a smooth, flat ended punch under conditions of plane strain. It is assumed that the yield stress of the solid k(x, y) has the form k 0+k(x, y) where k 0 is a constant and is small. A perturbation method of solution developed by Spencer [1] is used, and general results are obtained for arbitrary values of k(x, y). Some particular cases are then considered.  相似文献   

13.
The numerical model of phase transition in iron in stress waves described in [1] contains equations of state with a limited range of applicability. They do not consider thermal excitation of conduction electrons and the presence of and — -triple point on the phase equilibrium curve, the effect of which should appear in shock loading of porous or preheated specimens. The present study will offer thermodynamically complete equations of state for the -, -, -phases of iron, free of these shortcomings.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 112–114, May–June, 1986.  相似文献   

14.
We develop a scheme for the investigation of the asymptotic behavior of eigenvalues and eigenvectors of a family of self-adjoint compact operators {A: > 0} that act in different spaces and lose their compactness in the limit case 0. We prove the Hausdorff convergence of the spectrum of the operator A to the spectrum of the limit operator A0, obtain asymptotic estimates for this convergence both to points of the discrete spectrum and to points of the essential spectrum of the operator A0, and prove asymptotic estimates for eigenvectors of A. This scheme is applied to the investigation of the asymptotic behavior of eigenvalues and eigenfunctions of the Neumann problem in a thick singularly degenerate junction that consists of two domains connected by an -periodic system of thin rods of fixed length.  相似文献   

15.
Summary The spectral decomposition of the compliance, stiffness, and failure tensors for transversely isotropic materials was studied and their characteristic values were calculated using the components of these fourth-rank tensors in a Cartesian frame defining the principal material directions. The spectrally decomposed compliance and stiffness or failure tensors for a transversely isotropic body (fiber-reinforced composite), and the eigenvalues derived from them define in a simple and efficient way the respective elastic eigenstates of the loading of the material. It has been shown that, for the general orthotropic or transversely isotropic body, these eigenstates consist of two double components, 1 and 2 which are shears (2 being a simple shear and 1, a superposition of simple and pure shears), and that they are associated with distortional components of energy. The remaining two eigenstates, with stress components 3, and 4, are the orthogonal supplements to the shear subspace of 1 and 2 and consist of an equilateral stress in the plane of isotropy, on which is superimposed a prescribed tension or compression along the symmetry axis of the material. The relationship between these superimposed loading modes is governed by another eigenquantity, the eigenangle .The spectral type of decomposition of the elastic stiffness or compliance tensors in elementary fourth-rank tensors thus serves as a means for the energy-orthogonal decomposition of the energy function. The advantage of this type of decomposition is that the elementary idempotent tensors to which the fourth-rank tensors are decomposed have the interesting property of defining energy-orthogonal stress states. That is, the stress-idempotent tensors are mutually orthogonal and at the same time collinear with their respective strain tensors, and therefore correspond to energy-orthogonal stress states, which are therefore independent of each other. Since the failure tensor is the limiting case for the respective x, which are eigenstates of the compliance tensor S, this tensor also possesses the same remarkable property.An interesting geometric interpretation arises for the energy-orthogonal stress states if we consider the projections of x in the principal3D stress space. Then, the characteristic state 2 vanishes, whereas stress states 1, 3 and 4 are represented by three mutually orthogonal vectors, oriented as follows: The 3 and 4 lie on the principal diagonal plane (312) with subtending angles equaling (–/2) and (-), respectively. On the positive principal 3-axis, is the eigenangle of the orthotropic material, whereas the 1-vector is normal to the (312)-plane and lies on the deviatoric -plane. Vector 2 is equal to zero.It was additionally conclusively proved that the four eigenvalues of the compliance, stiffness, and failure tensors for a transversely isotropic body, together with value of the eigenangle , constitute the five necessary and simplest parameters with which invariantly to describe either the elastic or the failure behavior of the body. The expressions for the x-vector thus established represent an ellipsoid centered at the origin of the Cartesian frame, whose principal axes are the directions of the 1-, 3- and 4-vectors. This ellipsoid is a generalization of the Beltrami ellipsoid for isotropic materials.Furthermore, in combination with extensive experimental evidence, this theory indicates that the eigenangle alone monoparametrically characterizes the degree of anisotropy for each transversely isotropic material. Thus, while the angle for isotropic materials is always equal to i = 125.26° and constitutes a minimum, the angle || progressively increases within the interval 90–180° as the anisotropy of the material is increased. The anisotropy of the various materials, exemplified by their ratiosE L/2GL of the longitudinal elastic modulus to the double of the longitudinal shear modulus, increases rapidly tending asymptotically to very high values as the angle approaches its limits of 90 or 180°.  相似文献   

16.
An investigation is reported of several nonlinear eddy-viscosity models, both from a fundamental point of view and as a basis for resolving turbulence transport in transonic flows, with particular emphasis placed on shock-induced separation. The models are first analyzed by reference to a homogeneous shear flow and a plane channel flow, after which they are applied to two transonic flows with strong shock-wave/boundary-layer interaction including separation. The computational results demonstrate that nonlinear models with coefficients appropriately sensitized to strain and vorticity invariants, yield results which are superior to a standard linear low-Re k– model often claimed to give the best predictive performance among low-Re k– models which do not contain ad-hoc corrections. While this superior performance is partly associated with the functional dependence of the linear coefficient on strain and vorticity, this cannot be separated from the role of at least some nonlinear terms which interact with that coefficient, especially in complex strain fields featuring large streamline curvature and irrotational straining.  相似文献   

17.
We consider the Hill equation with damping describing the parametric oscillations of a torsional pendulum excited by varying the moment of inertia of the rotating body. Using the method of a small parameter, we analytically calculate a fundamental system of solutions of this equation in the form of power series in the excitation amplitude with accuracy O(2) and verify conditions for its stability. In the first-order approximation in , we prove that the resonance domain exists only if the excitation frequency is sufficiently close to the double natural frequency of the pendulum; the corresponding equation of the stability boundary is obtained.Published in Neliniini Kolyvannya, Vol. 7, No. 2, pp. 169–179, April–June, 2004.  相似文献   

18.
We report non-equilibrium molecular dynamics simulations of rigid and non-rigid dumbbell fluids to determine the contribution of internal degrees of freedom to strain-rate-dependent shear viscosity. The model adopted for non-rigid molecules is a modification of the finitely extensible nonlinear elastic (FENE) dumbbell commonly used in kinetic theories of polymer solutions. We consider model polymer melts — that is, fluids composed of rigid dumbbells and of FENE dumbbells. We report the steady-state stress tensor and the transient stress response to an applied Couerte strain field for several strain rates. We find that the rheological properties of the rigid and FENE dumbbells are qualitatively and quantitatively similar. (The only exception to this is the zero strain rate shear viscosity.) Except at high strain rates, the average conformation of the FENE dumbbells in a Couette strain field is found to be very similar to that of FENE dumbbells in the absence of strain. The theological properties of the two dumbbell fluids are compared to those of a corresponding fluid of spheres which is shown to be the most non-Newtonian of the three fluids considered.Symbol Definition b dimensionless time constant relating vibration to other forms of motion - F force on center of mass of dumbbell - F i force on bead i of dumbbell - F force between center of masses of dumbbells and - F ij force between beads i and j - h vector connecting bead to center of mass of dumbbell - H dimensionless spring constant for dumbbells, in units of / 2 - I moment of inertia of dumbbell - J general current induced by applied field - k B Boltzmann's constant - L angular momentum - m mass of bead, (= m/2) - M mass of dumbbell, g - N number of dumbbells in simulation cell - P translational momentum of center of mass of dumbbell - P pressure tensor - P xy xy component of pressure tensor - Q separation of beads in dumbbell - Q eq equilibrium extension of FENE dumbbell and fixed extension of rigid dumbbell - Q 0 maximum extension of dumbbell - r ij vector connecting beads i and j - r position vector of center of mass dumbbell - R vector connecting centers of mass of two dumbbells - t time - t * dimensionless time, in units of m/ - T * dimensionless temperature, in units of /k - u potential energy - u velocity vector of flow field - u x x component of velocity vector - V volume of simulation cell - X general applied field - strain rate, s–1 - * dimensionless shear rate, in units of /m 2 - general transport property - Lennard-Jones potential well depth - friction factor for Gaussian thermostat - shear viscosity, g/cms - * dimensionless shear viscosity, in units of m/ 2 - * dimensionless number density, in units of –3 - Lennard-Jones separation of minimum energy - relaxation time of a fluid - angular velocity of dumbbell - orientation angle of dumbbell   相似文献   

19.
A solution is obtained for the relationship between load, displacement and inner contact radius for an axisymmetric, spherically concave, rigid punch, indenting an elastic half-space. Analytic approximations are developed for the limiting cases in which the ratio of the inner and outer radii of the annular contact region is respectively small and close to unity. These approximations overlap well at intermediate values. The same method is applied to the conically concave punch and to a punch with a central hole. , , . , . . .  相似文献   

20.
In a brief survey of the previous work the limitations of the modified Darcy equation and of the vectorial form of the Ergun equation are discussed. To include the effect of wall friction on the flows the viscous resistance term is added to the vectorial form of the Ergun equation. Using the generalized Ergun equation a one-dimensional formulation is presented for flow of fluids through packed beds taking into account the variation of porosity along the radial direction. It is found that there is a reasonable agreement between the numerical and the experimental results and it is observed that the variation of porosity with radial position has greater influence on channeling of velocity near the walls. For the assumption of constant porosity the velocity profiles exhibit similar nature as the plug flow profiles with a thin boundary layer near the wall.
Modell der Geschwindigkeitsverteilung in einem isotherm durchströmten Festbett
Zusammenfassung In der vorliegenden Arbeit werden eingangs die Anwendbarkeitsgrenzen der modifizierten Darcy-Gleichung und der in vektorieller Form geschriebenen Ergun-Gleichung diskutiert. Um Einflüsse der Wandreibung auf eine Strömung mit in der Ergun-Gleichung berücksichtigen zu können, wird ein Reibungsterm hinzugefügt. Die so generalisierte Gleichung kann benutzt werden, um die eindimensional gerichtete Strömung durch eine Kugel schüttung zu berechnen. Eine radiale Veränderung der Schüttungsporosität ist dabei mit in die Betrachtung eingeschlossen. Das nichtlineare Grenzwertproblem wird numerisch gelöst und mit experimentellen Daten aus der Literatur verglichen. Die mit Meßwerten zufriedenstellend übereinstimmenden Rechenergebnisse zeigen, daß die radiale Porositätsverteilung in einem Festbett einen erheblichen Einfluß auf die Durchströmungsgeschwindigkeit in Wandnähe ausübt; die Berechnungen geben die Strömungsrandgängigkeit wieder. Wird die Bettporosität als unveränderlich angenommen, erhält man pfropfenströmungsähnliche Geschwindigkeitsprofile mit einer dünnen Wandgrenzschicht, in welcher die Geschwindigkeit auf den Wert null abfällt.

Nomenclature A Tridiagonal matrix defined in Eq. (20) - a Bed radius - dp Particle diameter - f1 150 (1–)2/(3d p 2 ) Darcy resistance term - f2 1,75(1–)/(3dp) Parameter of resistance due to inertial effects - ¯f1 150(1–)2/3 - ¯f2 1,75(1–)/3 - G Column vector defined in Eq. (20) - k Permeability, /f1 - L Length of the bed - P Pressure - r Radial co-ordinate - Rp Reynolds number based on particle diameter, v0dp/ - , vz Superficial velocity vector, axial component - v1z Average superficial velocity defined in Eq. (20) - V Absolute magnitude of velocity - ¯v The average velocity - v0 The velocity at the centre of the tube - X Column vector defined in Eq. (20) - r* Dimensionless radial co-ordinate, r/a - p* Dimensionless pressure, p/v 0 2 - v z * Dimensionless axial component of velocity, vz/v0 - ¯v* Dimensionless average velocity defined in Eq. (20) - z* Dimensionless axial co-ordinate, z/L Greek letters Ratio of tube radius to particle diameter, a/dp - Porosity or void fraction - 0 Porosity at the axis of the container - Dynamical viscosity - Kinematic viscosity - p Density - Distance from the wall of the container, defined in Eq. (16)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号