首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton spin-lattice relaxation by paramagnetic centers may be dramatically enhanced if the paramagnetic center is rotationally immobilized in the magnetic field. The details of the relaxation mechanism are different from those appropriate to solutions of paramagnetic relaxation agents. We report here large enhancements in the proton spin-lattice relaxation rate constants associated with organic radicals when the radical system is rigidly connected with a rotationally immobilized macromolecular matrix such as a dry protein or a cross-linked protein gel. The paramagnetic contribution to the protein-proton population is direct and distributed internally among the protein protons by efficient spin diffusion. In the case of a cross-linked-protein gel, the paramagnetic effects are carried to the water spins indirectly by chemical exchange mechanisms involving water molecule exchange with rare long-lived water molecule binding sites on the immobilized protein and proton exchange. The dramatic increase in the efficiency of spin relaxation by organic radicals compared with metal systems at low magnetic field strengths results because the electron relaxation time of the radical is orders of magnitude larger than that for metal systems. This gain in relaxation efficiency provides completely new opportunities for the design of spin-lattice relaxation based contrast agents in magnetic imaging and also provides new ways to examine intramolecular protein dynamics.  相似文献   

2.
We present a detailed theoretical and experimental NQR multiple-pulse spin-locking study of spin-lattice relaxation and spin diffusion processes in the presence of paramagnetic impurities in solids. The relaxation function of the nuclear spin system at the beginning of the relaxation process is given by exp , where T1ρ is spin-lattice relaxation time in rotating frame and =d/6, d is the sample dimensionality. Then the relaxation proceeds asymptotically to an exponential function of time, which was attributed to the spin-diffusion regime. Using the experimental data obtained from the analysis of those two relaxation regimes in γ-irradiated powdered NaClO3, spin diffusion coefficient has been determined and the radius of the diffusion barrier has been estimated.  相似文献   

3.
The (29)Si spin-lattice relaxation in porous silica-based material 1, doped by ions Mn(2+) at a Si/Mn ratio of 3.5, is non-exponential, independent of magic-angle spinning (MAS) rates and governed by direct dipolar coupling between electron and nucleus where an electron relaxation time is estimated to be about 10(-8)s. In the absence of mutual energy-conserving spin flips (spin diffusion) in 1, the (29)Si T(2) time increases linearly with spinning rates. None was observed in diamagnetic porous system 2. The unexpected (29)Si T(2) dependence has been interpreted in terms of the large bulk magnetic susceptibility (BMS) effects. It has been shown that editing the (29)Si Hahn-echo MAS NMR spectra eliminates wide lines, belonging to (29)Si nuclei in the proximity of paramagnetic centers, and reduces the BMS broadenings in sideband patterns for nuclei remote from these centers.  相似文献   

4.
The quadrupole coupling constants, asymmetry parameters and spin-lattice relaxation time of27A1 nuclei have been studied in Mn-doped YAlO3 crystals. The dependence of the relaxation time on temperature and concentration of Mn ions implies a mechanism of relaxation via Mn2+ paramagnetic ions taking into account the nuclear spin diffusion partly restricted by the diffusion barrier. A substantial increase of the relaxation times was observed in the photoexposed samples. We ascribe this effect to the appearance of fast-relaxing Mn5+ ions produced by photoionization of Mn4+ centers.  相似文献   

5.
The spin-lattice and spin-spin relaxation times of 139La are measured in manganite LaMnO3. Analysis of the frequency dependence of the spin-lattice relaxation rate in the paramagnetic temperature range shows that this quantity is determined by magnetic fluctuations. The magnitude of the fluctuating field is estimated. It is shown that the correlation time for spin fluctuations varies with temperature in accordance with the Arrhenius law. The high value of the spin-spin relaxation rate in the paramagnetic region can be due to strong anisotropy of fluctuating magnetic fields at La nuclei.  相似文献   

6.
The generation of singlet oxygen is investigated and its concentration upon photoexcitation of silicon nanocrystals in porous silicon layers is determined using electron paramagnetic resonance spectroscopy. The relaxation times of spin centers, i.e., silicon dangling bonds, in vacuum and in an oxygen atmosphere in the dark and under illumination of the samples are measured for the first time. It is revealed that the spin-lattice relaxation in porous silicon is retarded as compared to that in a single-crystal substrate. From analyzing experimental data, a microscopic model is proposed for interaction of oxygen molecules in the triplet state and spin centers at the surface of silicon nanocrystals. The results obtained have demonstrated that porous silicon holds promise for the use as a photosensitizer of molecular oxygen in biomedical applications.  相似文献   

7.
13C spin-lattice relaxation times in the laboratory frame, ranging from 1.4 to 36 h, have been measured on a suite of five natural type Ia and Ib diamonds at 4.7 T and 300 K. Each of the diamonds contains two types of fixed paramagnetic centers with overlapping inhomogeneous electron paramagnetic resonance (EPR) lines. EPR techniques have been employed to identify these defects and to determine their concentrations and relaxation times at X-band. Spin-lattice relaxation behavior of 13C in diamonds containing paramagnetic P1, P2, N2. and N3 centers are discussed. Depending on the paramagnetic impurity types and concentrations present in each diamond, three different nuclear spin-lattice relaxation (SLR) paths exist, namely that due to electron SLR mechanisms and two types of three-spin processes (TSPs). The one three-spin process (TSP1) involves a simultaneous transition of two electron spins belonging to the same hyperfine EPR line and a flip of a 13C spin, while the other process (TSP2) involves two electron spins belonging to different hyperfine EPR lines and a 13C spin. It is shown that the thermal contact between the 13C nuclear Zeeman and electron dipole-dipole interaction reservoirs is field dependent, thus forming a bottleneck in the 13C relaxation path due to TSP1 at high magnetic fields.  相似文献   

8.
The influence of boson peak (BP) excitations on low-temperature spin-lattice relaxation rate of a paramagnetic center embedded in a glassy matrix is investigated in the context of multi-frequency electron paramagnetic resonance (EPR) detection. In the theoretical analysis, the transition rate of spin one-half in the presence of a phonon field is calculated within the approximation of Fermi's golden rule. Several phonon densities of states are compared, among which one originating from a model of quasi-localized vibrations has been introduced into electron spin relaxation formalism for the first time. The respective frequency dependencies of spin-lattice relaxation rates are predicted which should lead to observable effects of BP modes if a multi-frequency study at very low temperatures is performed.  相似文献   

9.
Measured dimensionless room-temperature conductivity relaxation stretching fractions β in YBCO are in excellent agreement with theoretical predictions, which in 1995 identified two magic fractions, β=3/5 and β=3/7. Thus, relaxation studies provide an absolute measure of “ideality” in these complex materials, independent not only of composition x but even of crystal structure. The relaxation stretching fractions β associated with Tc itself, reported in 2000, are also explained by the magic fraction β=3/5 predicted by microscopic theory. One can infer that the interactions responsible for high-temperature superconductivity are short range, non-magnetic, and primarily associated with resonant trapping centers in semiconductive layers.  相似文献   

10.
Temperature and magnetic field dependences of the 19F nuclear spin-lattice relaxation in a single crystal of LiYF4 doped with holmium are described by an approach based on a detailed consideration of the magnetic dipole-dipole interactions between nuclei and impurity paramagnetic ions and nuclear spin diffusion processes. The observed non-exponential long time recovery of the nuclear magnetization after saturation at intermediate temperatures is in agreement with predictions of the spin-diffusion theory in a case of the diffusion limited relaxation. At avoided level crossings in the spectrum of electron-nuclear states of Ho3 + ions, rates of nuclear spin-lattice relaxation increase due to quasi-resonant energy exchange between nuclei and paramagnetic ions in contrast to the predominant role played by electronic cross-relaxation processes in the low-frequency ac-susceptibility.  相似文献   

11.
Finely dispersed carbonizate powders were studied with the aim of revealing their suitability for producing hyperpolarized noble gases. In the temperature and frequency dependences obtained over a wide range of temperatures and magnetic fields for the spin-lattice relaxation times of the magnetic moments of 3He, 1H, and 13C nuclei, anomalous features caused by the suppression of the exchange between surface paramagnetic centers in a magnetic field were observed. It is shown that the interaction with magnetic moments of the 1H nuclei situated near the paramagnetic centers is the main polarization-leakage channel for the noble-gas nuclear spins.  相似文献   

12.
氟哌酸1HNMR的测定及过渡金属离子对其影响   总被引:3,自引:6,他引:3  
陈亮  胡玉仙 《波谱学杂志》1987,4(2):155-160
氟哌酸*[即1-乙基-6-氟-4-氧-7-(1-哌嗪)-3-(1,4-二氢化喹啉甲酸]是一种广谱、安全、有效、可供口服的抗感染药。我们测定了它的1H自旋-晶格弛豫时间T1及其在Cr3+、Mn2+、和Fe3+等过渡金属离子存在下的T1值。实验结果表明,在加入过渡金属离子前后,氟哌酸不同位1H的T1值发生了一定的变化。据此可揭示过渡金属离子和氟哌酸形成配合物的配位点,从而可确定所形成配合物的结构。  相似文献   

13.
The rates of two types of nuclear spin-lattice relaxation are compared. Transverse relaxation of nuclear spins interacting with paramagnetic centers is also examined under the assumption that the paramagnetic centers form two-level tunneling systems. The transverse relaxation rate is calculated and it is shown that at certain temperatures the transverse relaxation rate is governed by the two-level systems. Fiz. Tverd. Tela (St. Petersburg) 39, 1210–1212 (July 1997) Deceased  相似文献   

14.
吴肖令 《波谱学杂志》1986,3(3):229-234
Nechtschein等人报道并分析了反式聚乙炔中质子自旋晶格弛豫时间对拉摩频率ω和温度T的依赖关系。观察到了质子自旋晶格弛豫速率T1-1ω-1/2的正比关系。但是在高频段,T1-1ω-1/2关系发生偏离,且温度越低,发生偏离的频率也越低。 本文用另一种方法对这些实验结果作了分析。首先,论证了孤子一维扩散模型的合理性。排除了质子弛豫速率∝ω-1/2的另一种解释,即仅仅是核自旋向着静止的顺磁中心扩散。孤子能处在运动状态或静止状态。当温度降低时,发生两个效应,即越来越少的孤子处于运动状态,且运动孤子的扩散系数减小。只有扩散的孤子对所观察到的质子弛豫有贡献,而固定孤子的贡献可以忽略。其次,描述了运动孤子的一维随机行走模型,计算了它的相关函数和谱密度函数。质子自旋晶格弛豫速率是: 其中C是运动孤子的浓度,τ是运动孤子沿链跳跃时,渡越相邻位置的跳跃时间,ω是质子的拉摩频率。 这个公式揭示了质子弛豫速率的频率和温度依赖关系的主要特征。它和Nechtschein的测量结果拟合得很好。从拟合中可以得到各个温度下运动孤子的跳跃时间和相对浓度。  相似文献   

15.
The paramagnetic contributions to the spin-lattice relaxation rates of biotin 13C nuclei, induced by the presence in the water/DMSO solution of the TEMPOL nitroxide, have been analysed in the interaction with avidin. The paramagnetic relaxation data, obtained at different temperatures, indicate that the average solvent/spin-label exposure of biotin carbons is consistent with the conformational features previously observed for the complex in the crystal. The analysis of the paramagnetic perturbation profiles, derived from 13C spin lattice relaxation measurements, seems to be highly informative of the sterical aspects of interaction processes of large biopolymers with their ligands.  相似文献   

16.
Effect of metal ions on free radical properties of natural melanin produced by soil fungiCladosporium cladosporioides was studied. The electron paramagnetic resonance (EPR) spectrum of the studied melanin consists mainly of a single line of eumelanin, and only a very weak signal of pheomelanin was observed. o-Semiquinone free radicals form paramagnetic centers in melanin. Diamagnetic Zn2+ ions produce an increase in the free radical concentration in melanin. Quenching of melanin EPR lines was obtained for melanin and paramagnetic Cu2+ ion complexes. Slow spin-lattice relaxation processes are characteristic for the free radicals in melanin samples and fast spin-lattice relaxation was observed for Cu2+ ions. The EPR lines of copper ions saturate at higher microwave powers than the EPR lines of melanin.  相似文献   

17.
Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.  相似文献   

18.
Due to its depth-dependent solubility, oxygen exerts paramagnetic effects which become progressively greater toward the hydrophobic interior of micelles, and lipid bilayer membranes. This paramagnetic gradient, which is manifested as contact shift perturbations (19F and 13C NMR) and spin-lattice relaxation enhancement (19F and 1H NMR), has been shown to be useful for precisely determining immersion depth, membrane protein secondary structure, and overall topology of membrane proteins. We have investigated the influence of oxygen on 19F and 13C NMR spectra and spin-lattice relaxation rates of a semiperfluorinated detergent, (8,8,8)-trifluoro (3,3,4,4,5,5,6,6,7,7)-difluoro octylmaltoside (TFOM) in a model membrane system, to determine the dominant paramagnetic spin-lattice relaxation and shift-perturbation mechanism. Based on the ratio of paramagnetic spin-lattice relaxation rates of 19F and directly bonded 13C nuclei, we conclude that the dominant relaxation mechanism must be dipolar. Furthermore, the temperature dependence of oxygen-induced chemical shift perturbations in 9F NMR spectra suggests a contact interaction is the dominant shift mechanism. The respective hyperfine coupling constants for 19F and 13C nuclei can then be estimated from the contact shifts <(deltav/v0)19F> and <(deltav/v0)13C>, allowing us to estimate the relative contribution of scalar and dipolar relaxation to 19F and 13C nuclei. We conclude that the contribution to spin-lattice relaxation from the oxygen induced paramagnetic scalar mechanism is negligible.  相似文献   

19.
Spin-lattice relaxation is analyzed in a crystal containing two types of paramagnetic centers having approximately equal resonant frequencies but markedly different spin-phonon couplings. It is assumed that for the centers having the strong spin-phonon coupling this coupling is stronger than the spin-spin coupling with other paramagnetic centers. The Green's function method is used. The spin-lattice relaxation time for the centers coupled weakly with the lattice through rapidly relaxing centers is found as a function of the difference between the splittings of their spin levels, the strength of the spin-spin coupling between these centers, the concentrations of these centers, and the strength of the spin-phonon coupling over rapidly relaxing centers.Translated from Izvestiya VUZ. Fizika, No. 3, pp. 15–20, March, 1970.In conclusion the author thanks S. A. Al'tshuler and L. K. Aminov for useful discussions of these results.  相似文献   

20.
EPR, 13C NMR and TEM study of ultradisperse diamond (UDD) samples is reported. The compounds show a high concentration of paramagnetic centers (up to 1020 spin/g), which are due to structural defects (dangling C-C bonds) on the diamond cluster surface. The anomalous reduction in the spin-lattice relaxation time of 13C (from several hours in natural diamond to ∼150 ms in UDD clusters) is attributed to the interaction between the unpaired electrons of the paramagnetic centers and nuclear spins. 13C NMR line-width reflects the fact that the structure of the UDD surface is distorted in comparison to the ‘bulk’ diamond structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号