首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The last decade has seen paper-and-pencil (P&P) tests being replaced by computerized adaptive tests (CATs) within many testing programs. A CAT may yield several advantages relative to a conventional P&P test. A CAT can determine the questions or test items to administer, allowing each test form to be tailored to a test taker’s skill level. Subsequent items can be chosen to match the capability of the test taker. By adapting to a test taker’s ability, a CAT can acquire more information about a test taker while administering fewer items. A Multiple Stage Adaptive test (MST) provides a means to implement a CAT that allows review before the administration. The MST format is a hybrid between the conventional P&P and CAT formats. This paper presents mixed integer programming models for MST assembly problems. Computational results with commercial optimization software will be given and advantages of the models evaluated.  相似文献   

2.
3.
In this paper we consider solution methods for multiobjective integer programming (MOIP) problems based on scalarization. We define the MOIP, discuss some common scalarizations, and provide a general formulation that encompasses most scalarizations that have been applied in the MOIP context as special cases. We show that these methods suffer some drawbacks by either only being able to find supported efficient solutions or introducing constraints that can make the computational effort to solve the scalarization prohibitive. We show that Lagrangian duality applied to the general scalarization does not remedy the situation. We also introduce a new scalarization technique, the method of elastic constraints, which is shown to be able to find all efficient solutions and overcome the computational burden of the scalarizations that use constraints on objective values. Finally, we present some results from an application in airline crew scheduling as evidence. This research is partially supported by University of Auckland grant 3602178/9275 and by the Deutsche Forschungsgemeinschaft grant Ka 477/27-1.  相似文献   

4.
Commercial fertiliser and trace element mixtures are widely used in crop production to supply part of the nutrient requirements of the crop. In evaluating fertiliser policy, the crop producer must consider the mixtures to be used and the blending and application policy. In this paper a mixed integer programming model is developed to determine the policy for sourcing, blending and application of commercial fertiliser and trace mixtures to supply specified crop nutrient requirements at minimum cost. Results from the model are presented and the advantages and disadvantages of the approach are discussed.  相似文献   

5.
A technique is presented for solving the multiple objective integer linear programming problem. The technique can be used to identify some or all efficient solutions. While the technique is applicable with any integer programming algorithm, it is well suited for implementation using integer postoptimality techniques. Such an implementation, based on Balas' Additive algorithm, is described for problems with zero-one variables.  相似文献   

6.
This paper grapples with the problem of incorporating integer variables in the constraints of a multiple objective stochastic linear program (MOSLP). After representing uncertain aspirations of the decision maker by converting the original problem into a deterministic multiple objective integer linear program (MOILP), a cutting plane technique may be used to compute all the efficient solutions of the last model leaving the decision maker to choose a solution according to his preferences. A numerical example is also included for illustration.  相似文献   

7.
Many marine fisheries are under pressure from overfishing. Fisheriesmanagement is a complex process because of the need to considerthe interaction of the biological components of the fishery,the technical characteristics of the fishing fleet, and theeconomic aspects of the fishing industry. In this paper, a mixedinteger programming (MIP) model for determining the policy tomaximize the long-run economic benefit from a single-speciesmulticohort fishery is developed. The model takes account ofthe biological, technical, and economic characteristics of thefishery, using integer variables to model the fishing activities.An iterative procedure for solving the model using commercialMIP software is described, and the viability of this procedureis illustrated using data for the western mackerel fishery.  相似文献   

8.
Central European Journal of Operations Research - The use of the online channel has greatly increased the logistics costs of supermarket chains. Even the difficulty of managing order picking and...  相似文献   

9.
In this paper, a branch and bound algorithm for the generation of the efficient set in mixed zero-one multiple objective linear programming problems is presented. The algorithm is developed as to take account of the multiple objectives in the node fathoming procedure. In order to extend the algorithm's applicability to large sized problems from real life, an interactive procedure is introduced which systematically reduces the number of efficient points and thus saves considerable computational effort without losing essential information. The algorithm is tested in randomly generated problems along with a case study conceming the power generation sector  相似文献   

10.
In this paper, we address the thesis defence scheduling problem, a critical academic scheduling management process, which has been overshadowed in the literature by its counterparts, course timetabling and exam scheduling. Specifically, we address the single defence assignment type of thesis defence scheduling problems, where each committee is assigned to a single defence, scheduled for a specific day, hour and room. We formulate a multi-objective mixed-integer linear programming model, which aims to be applicable to a broader set of cases than other single defence assignment models present in the literature, which have a focus on the characteristics of their universities. For such a purpose, we introduce a different decision variable, propose constraint formulations that are not regulation and policy specific, and cover and offer new takes on the more common objectives seen in the literature. We also include new objective functions based on our experience with the problem at our university and by applying knowledge from other academic scheduling problems. We also propose a two-stage solution approach. The first stage is employed to find the number of schedulable defences, enabling the optimisation of instances with unschedulable defences. The second stage is an implementation of the augmented ϵ-constraint method, which allows for the search of a set of different and non-dominated solutions while skipping redundant iterations. The methodology is tested for case-studies from our university, significantly outperforming the solutions found by human schedulers. A novel instance generator for thesis scheduling problems is presented. Its main benefit is the generation of the availability of committee members and rooms in availability and unavailability blocks, resembling their real-world counterparts. A set of 96 randomly generated instances of varying sizes is solved and analysed regarding their relative computational performance, the number of schedulable defences and the distribution of the considered types of iterations. The proposed method can find the optimal number of schedulable defences and present non-dominated solutions within the set time limits for every tested instance.  相似文献   

11.
Governments borrow funds to finance the excess of cash payments or interest payments over receipts, usually by issuing fixed income debt and index-linked debt. The goal of this work is to propose a stochastic optimization-based approach to determine the composition of the portfolio issued over a series of government auctions for the fixed income debt, to minimize the cost of servicing debt while controlling risk and maintaining market liquidity. We show that this debt issuance problem can be modeled as a mixed integer linear programming problem with a receding horizon. The stochastic model for the interest rates is calibrated using a Kalman filter and the future interest rates are represented using a recombining trinomial lattice for the purpose of scenario-based optimization. The use of a latent factor interest rate model and a recombining lattice provides us with a realistic, yet very tractable scenario generator and allows us to do a multi-stage stochastic optimization involving integer variables on an ordinary desktop in a matter of seconds. This, in turn, facilitates frequent re-calibration of the interest rate model and re-optimization of the issuance throughout the budgetary year allows us to respond to the changes in the interest rate environment. We successfully demonstrate the utility of our approach by out-of-sample back-testing on the UK debt issuance data.  相似文献   

12.
A mixed integer programming model for scheduling orders in a steel mill   总被引:1,自引:0,他引:1  
The problem of scheduling orders at each facility of a large integrated steel mill is considered. Orders are received randomly, and delivery dates are established immediately. Each order is filled by converting raw materials into a finished saleable steel product by a fixed sequence of processes. The application of a deterministic mixed integer linear programming model to the order scheduling problem is given. One important criterion permitted by the model is to process the orders in a sequence which minimizes the total tardiness from promised delivery for all orders; alternative criteria are also possible. Most practical constraints which arise in steelmaking can be considered within the formulation. In particular, sequencing and resource availability constraints are handled easily. The order scheduling model given here contains many variables and constraints, resulting in computational difficulties. A decomposition algorithm is devised for solving the model. The algorithm is a special case of Benders partitioning. Computational experience is reported for a large-scale problem involving scheduling 102 orders through ten facilities over a six-week period. The exact solution to the large-scale problem is compared with schedules determined by several heuristic dispatching rules. The dispatching rules took into consideration such things as due date, processing time, and tardiness penalties. None of the dispatching rules found the optimal solution.  相似文献   

13.
Let ${P \subseteq {\mathbb R}^{m+n}}$ be a rational polyhedron, and let P I be the convex hull of ${P \cap ({\mathbb Z}^m \times {\mathbb R}^n)}$ . We define the integral lattice-free closure of P as the set obtained from P by adding all inequalities obtained from disjunctions associated with integral lattice-free polyhedra in ${{\mathbb R}^m}$ . We show that the integral lattice-free closure of P is again a polyhedron, and that repeatedly taking the integral lattice-free closure of P gives P I after a finite number of iterations. Such results can be seen as a mixed integer analogue of theorems by Chvátal and Schrijver for the pure integer case. One ingredient of our proof is an extension of a result by Owen and Mehrotra. In fact, we prove that for each rational polyhedron P, the split closures of P yield in the limit the set P I .  相似文献   

14.
Conflict analysis for infeasible subproblems is one of the key ingredients in modern SAT solvers. In contrast, it is common practice for today’s mixed integer programming solvers to discard infeasible subproblems and the information they reveal. In this paper, we try to remedy this situation by generalizing SAT infeasibility analysis to mixed integer programming.We present heuristics for branch-and-cut solvers to generate valid inequalities from the current infeasible subproblem and the associated branching information. SAT techniques can then be used to strengthen the resulting constraints. Extensive computational experiments show the potential of our method. Conflict analysis greatly improves the performance on particular models, while it does not interfere with the solving process on the other instances. In total, the number of required branching nodes on general MIP instances was reduced by 18% in the geometric mean, and the solving time was reduced by 11%. On infeasible MIPs arising in the context of chip verification and on a model for a particular combinatorial game, the number of nodes was reduced by 80%, thereby reducing the solving time by 50%.  相似文献   

15.
In this paper, we introduce a mixed integer stochastic programming approach to mean–variance post-tax portfolio management. This approach takes into account of risk in a multistage setting and allows general withdrawals from original capital. The uncertainty on asset returns is specified as a scenario tree. The risk across scenarios is addressed using the probabilistic approach of classical stochastic programming. The tax rules are used with stochastic linear and mixed integer quadratic programming models to compute an overall tax and return-risk efficient multistage portfolio. The incorporation of the risk term in the model provides robustness and leads to diversification over wrappers and assets within each wrapper. General withdrawals and risk aversion have an impact on the distribution of assets among wrappers. Computational results are presented using a study with different scenario trees in order to show the performance of these models.  相似文献   

16.
17.
This paper presents a mixed integer programming (MIP) model which succeeds in a system integration of the production planning and shop floor scheduling problems. The proposed advanced planning and scheduling (APS) model explicitly considers capacity constraints, operation sequences, lead times and due dates in a multi-order environment. The objective of the model is to seek the minimum cost of both production idle time and tardiness or earliness penalty of an order. The output of the model is operation schedules with order starting time and finish time. Numerical result shows that the suggested APS model can favorably produce optimal schedules.  相似文献   

18.
Curriculum design is a highly important activity for the academic institutions. It is discussed in literature as a balancing academic curriculum problem (BACP). The BACP schedules courses to different semesters, while balancing the total workload per period. BACP model involves precedence relations, but the related courses are not necessarily assigned to closest periods.  相似文献   

19.
This paper describes the problem of rostering a workforce so as to optimise a weighted sum of three criteria while satisfying several constraints. The rostering entailed deciding on a pattern of working days and breaks over a period of (typically) one year. Demand had to meet 24?hours each day and 365?days each year.It was possible to formulate this problem as a mixed integer program and, with some experimentation, solve it using an ‘off the shelf’ linear programming package. The results obtained are compared with rosters the client now uses.  相似文献   

20.
Stabilized sequential quadratic programming (sSQP) methods for nonlinear optimization generate a sequence of iterates with fast local convergence regardless of whether or not the active-constraint gradients are linearly dependent. This paper concerns the local convergence analysis of an sSQP method that uses a line search with a primal-dual augmented Lagrangian merit function to enforce global convergence. The method is provably well-defined and is based on solving a strictly convex quadratic programming subproblem at each iteration. It is shown that the method has superlinear local convergence under assumptions that are no stronger than those required by conventional stabilized SQP methods. The fast local convergence is obtained by allowing a small relaxation of the optimality conditions for the quadratic programming subproblem in the neighborhood of a solution. In the limit, the line search selects the unit step length, which implies that the method does not suffer from the Maratos effect. The analysis indicates that the method has the same strong first- and second-order global convergence properties that have been established for augmented Lagrangian methods, yet is able to transition seamlessly to sSQP with fast local convergence in the neighborhood of a solution. Numerical results on some degenerate problems are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号