首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
In this work we study a version of the three constant differential-type Oldroyd constitutive relation which allows distinct objective time derivatives for the extra stress and the stretching. We integrate the constitutive equation and determine an equivalent history integral representation for this model for the general class of viscometric motions. For certain choices of the material parameters and initial conditions, we find that this model allows for the development of shear rate discontinuities in the flow domain as a steady viscometric flow is achieved. Correspondingly, we also give evidence that intense shear rate oscillations may occur during the transient period as an impulsively started viscometric flow in a channel tends to a steady state under a constant critical shear stress. This critical shear stress lies in an interval of values for which the material experiences the phenomenon of “flow yielding”. A qualitative comparison with experimental data is made for certain creams and greases. The material instabilities inherent in this constitutive theory for viscometric motions are suggestive of the instabilities that occur in many viscoelastic fluids such as sharkskin patterns, wavy fracture, and spurt flow.  相似文献   

2.
The purely rational theory of Eckart continua (i.e. elastic bodies with a variable relaxed state) is applied to viscometric flows of polymeric melts. The main assumptions are thermodynamic non-interaction of inelastic behaviour and of non-elastic stress, as well as elastic isotropy. After establishing the time-dependent differential equations of viscometric flow, these equations are simplified to a set of algebraic equations describing steady-state flow. From this we deduce two general equations connecting the three elastic steady-state viscometric functions which do not depend upon the elastic behaviour. The law of rubber elasticity used in this paper is described in the Appendix.  相似文献   

3.
Isothermal fiber-spinning results have been obtained for an 1850 ppm solution of polyisobutylene with a constant viscosity of 360 poise and a relaxation time of 0.824 s. The steady and dynamic shear properties of this Boger fluid are well described by the Oldroyd B constitutive equation for shear rates less than 10 s−1. Velocity profiles and spinline stresses were measured for a variety of fiber drawdown ratios, spinline lengths and for shear rates within the range of applicability of the Oldroyd B model. The results are compared with the theory developed in Part I [4], and excellent agreement is obtained when the effects of gravity were propertly taken into account. Indeed, this is the first time that the correct stress levels in the extensional flow of a highly viscoelastic polymer solution have been predicted from a knowledge of viscometric data alone using a simple three-parameter constitutive equation.  相似文献   

4.
This paper examines three-dimensional disturbances of a plane steady shear flow of simple fluids with short memory. Under the assumption of nearly-viscometric flow, constitutive equations are derived and then a general form of the Reynolds-Orr energy equation is obtained. With the aid of this derived energy formula, sufficient conditions are generated for the stability of three-dimensional disturbances of the planar viscometric flow. These conditions are analysed and a comparison is made with the corresponding two-dimensional stability problem. There is a strong indication that the basic flow is less stable against three-dimensional disturbances than against two-dimensional ones.  相似文献   

5.
Traditional methods of rheometry employ simple flows such as viscometric flows and measure stress or volumetric flow rate to determine the rheological parameters in the constitutive equation. One can find analytic solutions for stress and volumetric flow rates for these simple flows, and comparison of them with experimental data determines rheological parameter values. In the present investigation, rheological parameters are estimated by measuring velocity at certain locations. A pulsatile flow in a circular pipe, which can be implemented easily, is adopted to estimate rheological parameters in a general constitutive equation. The inverse problem of determining the rheological parameters from velocity measurements is solved using a conjugate gradient method. The present method is found to yield a reasonably accurate estimation of rheological parameters even with noisy velocity measurements.  相似文献   

6.
An orthogonal collocation method is used to compute steady flows of viscoelastic fluids in a cylindrical tank covered by a rotating disk. The stability of these flows with respect to small disturbances is also analyzed. The Criminale-Ericksen-Filbey constitutive equation is used, since the primary flow is viscometric and the secondary flow is small. The solutions satisfy the equation of continuity and the boundary conditions exactly, including the velocity discontinuity at the edge of the disk. The computed flows for aqueous solutions of Separan 30 exhibit single or double vortices, according to the concentration and the rotation speed. Reasonable agreement is found with the data of Hill [7,8].  相似文献   

7.
The anti-plane impact fracture analysis was performed for a weak-discontinuous interface in a symmetrical functionally gradient composite strip. A new bi-parameter exponential function was introduced to simulate the continuous variation of material properties. Using Laplace and Fourier integral transforms, we reduced the problem to a dual integral equation and obtained asymptotic analytical solution of crack-tip stress field. Based on the numerical solution of the second kind of Fredholm integral equation transformed from the dual integral equation, the effects of the two non-homogeneity parameters on DSIF were discussed. It was indicated that the relative stiffness of the interface and the general stiffness of the whole structure are two important factors affecting the impact fracture behavior of the weak-discontinuous interface. The greater the relative stiffness of the interface is, the higher the value of the dynamic stress intensity factor will be. The greater the general stiffness of the whole structure is, the shorter the time for DSIF to arrive at the peak value and then to stabilize to the steady one. If the general stiffness of the whole structure is great enough, there will be an oscillation between the peak and steady values of DSIF.  相似文献   

8.
This paper presents a study of a silicone oil (poly(dimethyl siloxane)) in extensional deformation using an instrument developed recently by the authors. Data from steady shear and low amplitude sinusoidal deformation of this liquid clearly establish that it is weakly elastic. The viscometric data, for shear rates less than 100 s −1, are best represented by either the Maxwell model or the Jeffrey's model, the latter being marginally superior. The extensional data show that at low deformation rates, this fluid exhibits a Newtonian behavior with an apparent extensional viscosity equal to three times the shear viscosity. Under these conditions the velocity profiles along the spinline are also well represented by the Newtonian model. However, at higher deformation rates better predictions of the velocity profiles are obtained from the Jeffrey's and Maxwell models. At deformation rates above 100 s −1 none of these simple models is adequate. Under the conditions used in these experiments, the fractional increase in tensile stress along the fiber is shown both theoretically and experimentally to be a unique function of the total strain. Furthermore, the apparent extensional viscosity at any point on the spinline can be calculated from steady state expressions if allowance is made for the variation of stretch rates by defining a time averaged stretch rate.The results obtained here show that elasticity must be considered if these model liquids are used to conduct rheological experiments at high deformation rates. Additionally, it is found that elastic effects in extension can be predicted using simple constitutive equations provided viscometric data can be represented properly in the deformation rate range of interest. Finally, the present research further substantiates the utility of the extensional viscometer developed by the authors.  相似文献   

9.
A continuum theory of rigid suspensions is introduced. Balance laws and constitutive equations of micropolar continuum theory are modified and extended for the characterization of dense rigid suspensions. Thermodynamic restrictions are imposed. The general theory is specialized to the case of dense rigid fiber and spherical suspensions. Dilute suspensions in Newtonian fluids are obtained as special cases. Motions of rigid fiber suspensions in viscometric flows are determined as applications of the theory.  相似文献   

10.
This work is the continuation of the discussion of Ref. [1]. In this paper we resolve the equations of isentropic gas dynamics into two problems: the three-dimensional non-constant irrotational flow (thus the isentropic flow, too), and the three-dimensional non-constant indivergent flow (i. c. the in compressible isentropic flow). We apply the theory of functions of a complex variable under Dirac-Pauli representation and the Legendre transformation, transform these equations of two problems from physical space into velocity space, and obtain two general Chaplygin equations in this paper. The general Chaplygin equation is a linear difference equation, and its general solution can be expressed at most by the hypergeometric functions. Thus we can obtain the general solution of general problems for the three-dimensional non-constant isentropic flow of gas dynamics.  相似文献   

11.
横观各向同性三维热弹性力学通解及其势理论法   总被引:3,自引:0,他引:3  
陈伟球  丁皓江 《力学学报》2003,35(5):578-583
通过引入两个位移函数,对用位移表达的运动平衡方程作了简化.利用算子理论,严格地导出了横观各向同性非耦合热弹性动力学问题的通解.对于静力学问题,通解的形式可进一步简化成用4个准调和函数来表示.具体考察了横观各向同性体内平面裂纹上下表面有对称分布温度作用的问题,推广了势理论方法,导出了一个积分方程和一个微分-积分方程.针对币状裂纹表面受均布温度作用情形,给出了具体的解。  相似文献   

12.
Pressure-flow relationships are derived for the steady flow through an eccentric double circular tube whose cross section takes the form of an annulus bounded by two circles which are in general not concentric. The velocity distribution can be obtained by solving a two-dimensional Poisson equation with the use of conformal mapping. In a case when the two circles touch, a mapping function of different type is required to solve the equation. The relationships thus derived are reduced to the well-known formula for the limit of concentric circles. It is found that when the region between touching circles becomes sufficiently thin, the tube conductance behaves like the cube of the difference of radii of the two circles.  相似文献   

13.
A fairly simple generalization of the grade 2 fluid is described. However, unlike the grade 2 fluid, this fluid of differential type can accomodate extremely general viscometric data and still be consistent with commonly held ideas of energy dissipation and stability.  相似文献   

14.
We consider a very general class of delayed reaction–diffusion equations in which the reaction term can be non-monotone as well as spatially non-local. By employing comparison technique and a dynamical system approach, we study the global asymptotic behavior of solutions to the equation subject to the homogeneous Dirichlet condition. Established are threshold results and global attractiveness of the trivial steady state, as well as the existence, uniqueness and global attractiveness of a positive steady state solution to the problem. As illustrations, we apply our main results to the local delayed diffusive Mackey–Glass equation and the nonlocal delayed diffusive Nicholson blowfly equation, leading to some very sharp results for these two particular models.  相似文献   

15.
Human blood at physiological volume concentration exhibits non-Newtonian and thixotropic properties. The blood flow in the microcirculation is pulsatile, initiated from the heart pulse and can be considered as superposition of two partial flows: a) a steady shear, and b) an oscillatory shear. Until now steady and viscoelastic behavior were separately investigated. Here we present the response to the combination of steady and oscillatory shear for human blood, a high molecular weight aqueous polymer solution (polyacrylamide AP 273E) and an aqueous xanthan gum solution. The polyacrylamide and xanthan solutions are fluids that model the rheological properties of human blood. In general, parameters describing blood viscoelasticity became less pronounced as superimposed steady shear increased, especially at low shear region and by elasticity, associated with reduction in RBC aggregation. The response of polymer solutions to superposition shows qualitative similarities with blood by elasticity, but their quantitative response differed from that of blood. By viscosity another behavior was observed. The superposition effect on viscous component was described by a modified Carreau equation and for the elastic component by an exponential equation.Paper in part presented at the Symposium on Rheology and Computational Fluid Mechanics dedicated to the memory of Prof. A. C. Papanastasiou, University of Cyprus, Nicosia, July 4–5, 1996  相似文献   

16.
The Boltzmann equation for inelastic Maxwell models is considered to determine the rheological properties in a granular binary mixture in the simple shear flow state. The transport coefficients (shear viscosity and viscometric functions) are exactly evaluated in terms of the coefficients of restitution, the (reduced) shear rate and the parameters of the mixture (particle masses, diameters and concentration). The results show that in general, for a given value of the coefficients of restitution, the above transport properties decrease with increasing shear rate.  相似文献   

17.
In a recent study, Ganpule and Khomami (submitted to J. Non-Newtonian Fluid Mech.) have shown that in order to accurately describe the experimentally observed interfacial instability phenomenon in superposed channel flow of viscoelastic fluids, a constitutive equation that can accurately depict not only the steady viscometric properties of the experimental test fluids, but also their transient viscoelastic properties must be used in the analysis. In the present study, the effect of differences in transient viscoelastic properties which can arise either due to the differences in the predictive capabilities of various constitutive models or from the presence of multiple modes of relaxation on the interfacial instabilities of the superposed pressure driven channel flows has been investigated. Specifically, a linear stability analysis is performed using nonlinear constitutive equations which predict identical steady viscometric properties but different transient viscoelastic properties. It is shown that different nonlinear constitutive equations give rise to the same mechanism of interfacial instability, but the boundaries of the neutral stability contours and the magnitudes of the growth/decay rates, especially at intermediate and shortwaves, are shifted due to the overshoots in the transient viscoelastic responses predicted by the constitutive equations. In addition, the effect of the presence of multiple modes of relaxation on interfacial stability is studied using single and multiple mode upper convected Maxwell (UCM) fluids and it is shown that pronounced differences in the intermediate and shortwave linear stability predictions arise due to the fact that the increase in the number of modes gives rise to additional fast as well as slow relaxation modes and the presence of these additional relaxation modes gives rise to differences in the transient viscoelastic response of the fluids in the absence of any overshoots. The effect of fluid inertia on the interfacial stability of viscoelastic liquids is examined and it is shown that at longwaves, inertia has a pronounced effect on the stability of the interface, whereas at shortwaves, elastic and viscous effects dominate. Furthermore, the mechanism of viscoelastic interfacial instabilities is studied by a careful examination of disturbance eigenfunctions as well as performing a disturbance energy analysis. The results indicate that the mechanism of viscoelastic interfacial instabilities can be described in terms of interaction of mechanisms of purely viscous and purely elastic instabilities. However, since more than one mechanism for the instability is at work, the disturbance energy analysis can not clearly distinguish between them due to the fact that the eigenfunctions used in the energy analysis contain the information regarding both viscous and elastic effects. Hence, the mechanism of the instability must be determined by a careful examination of disturbance eigenfunctions.  相似文献   

18.
The stability of periodic solutions to the steady forced Korteweg–de Vries–Burgers (fKdVB) equation is investigated here. This family of periodic solutions was identified by Hattam and Clarke (2015) using a multi-scale perturbation technique. Here, Floquet theory is applied to the governing equation. Consequently, two criteria are found that determine when the periodic solutions are stable. This analysis is then confirmed by a numerical study of the steady fKdVB equation.  相似文献   

19.
Numerical simulation is used to investigate the flow of polymer solutions around a periodic, linear array of cylinders by using three constitutive equations derived from kinetic theory of dilute polymer solutions: the Giesekus model; the finitely extensible, nonlinear elastic dumbbell model with Peterlin's approximation (FENE-P); and the FENE dumbbell model of Chilcott–Rallison (CR). In the Giesekus model, intramolecular forces are described by a Hookean spring, whereas a finitely extensible spring whose modulus is given by the Warner approximation is used in both the FENE-P and CR models. Hydro dynamic drag on the beads is taken to be anisotropic for the Giesekus model and isotropic for the other two models. The CR and FENE-P models differ subtly in their approximate treatment of the nonlinear force law. The three models exhibit very similar rheological behavior in viscometric flow and steady elongational flow, with the notable exception that the viscosity for the CR model is shear-rate independent. Finite element simulations are performed by using two different formulations: the elastic-viscous split-stress gradient (EVSS-G) method and a new variant of this formulation, the discrete EVSS-G (DEVSS-G) formulation, in which the elliptic stabilization term is added only to the discrete version of the momentum equation, and the constitutive equation is solved directly in terms of the polymer contribution to the stress tensor. Calculations are performed for all models up to a Weissenberg number We, where the configuration tensor 〈QQ〉 loses positive definiteness. However, by locally refining the mesh in the gap region, the positive definiteness of 〈QQ〉 is recovered. The flow and stress fields predicted by the three constitutive equations are qualitatively similar. A `birefringent strand' of highly stretched polymer molecules, which appears to emanate from the rear stagnation point in the cylinder, strengthens as We is increased. Not surprisingly, the molecular extension computed for the Giesekus model is considerably larger than that of the two FENE spring models. The drag force on the cylinders differs for the FENE-P and CR models, because of the difference in the shear-thinning viscosity resulting from the different approximations used in these models.  相似文献   

20.
A. S. Wagh 《Rheologica Acta》1986,25(5):513-520
A kinetic theory of interacting spherical particles in dilute suspension is developed which results in a Boltzmann transport equation. This equation is solved in the relaxation time approximation to calculate the settling velocity of fine particulates in the steady state. The theory is applied to the suspended Jamaican bauxite waste and kaolinite particles. The experimental settling velocity compares well with the calculated values at low concentrations. This treatment can form the basis for a more rigorous theory applicable to denser systems and non-spherical particulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号