首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shear and extensional viscosities and wall slip are determined simultaneously under extrusion processing conditions using an on-line rheometer. Because it is not possible to independently control flow rate and temperature, classical methods for interpretation of capillary data cannot be used with on-line rheometry. This limitation is overcome using computational optimization to fit parameters in a flow model. This consists of three parts, representing shear viscosity, extensional viscosity, and wall slip. Three-parameter, power law forms, based on local instantaneous deformation rates and including temperature dependence, are used for each, and analytic solutions applied for entry flow and flow in the capillary. For entry flow, the Cogswell–Binding approach is used, and for developed flow in the capillary a solution incorporating wall slip is derived. The rheometer, with interchangeable capillaries, is mounted in place of the die on a rubber profile extrusion line. Pressure drops and temperatures for extrusion of an EPDM rubber through 2 mm diameter capillaries of length 0, 2, 3, 4, and 5 mm are logged and flow rates determined for a range of extruder speeds (5 to 20 rpm). Pressures ranged from 60 to 75 bar and temperatures from 86 to 116 °C. Mean flow velocity in the capillaries was between 5 × 10−3 and 5 × 10−1 m s−1. The nine material parameters are optimized for best fit of the analytic pressure drops to experimental data, using about 100 data points, with the Levenberg–Marquardt method. It is concluded that flow is dominated by extension and wall slip. Shear flow appears to play little part. The slip model indicates that slip velocity increases much more rapidly than the wall shear stress (in the range 0.5–1 MPa) and decreases with temperature for a given stress level. Results for the (uniaxial) extensional viscosity represent an engineering approximation to this complex phenomenon at the high strains (approximately 200) and high extension rates (up to 800 s−1) applying in the extrusion. Results indicate a slight extension hardening and a decrease with temperature. Results are put into the context of the available studies in the literature, which, particularly with regard to wall-slip and extensional flow, consider conditions far removed from those applying in industrial extrusion. The present methods provide a powerful means for flow characterization under processing conditions, providing data suitable for use in computer simulations of extrusion and optimization of die design.  相似文献   

2.
Polymethylmethacrylate, cellulose acetate butyrate, polypropylene and nylon 6–6 have been characterized in compression at various strain rates from 10?4 s?1 to 103 s?1 at room temperature. A medium strain-rate machine and a split-Hopkinson-bar apparatus are used in conducting the experiments. The temperature rise developed during deformation is also measured by using a thermocouple. All four materials tested definitely show a viscous effect at the beginning of the deformation and a plastic flow follows thereafter. Test results also indicate that the temperature rise developed during deformation cannot be neglected in determining the dynamic response of those materials investigated in this study.  相似文献   

3.
As part of a study of viscous and elastic behaviors, over a range of temperatures from below the glass transition up to the hot melt, we here report steady-shear viscosities at 0.007 to 13 s?1 and at 160 to 220 °C of polystyrene containing 0 to 60% by mass of 0.18-micron diameter titanium dioxide particles. The materials were shearthinning without a yield stress, with a constant activation energy at constant stress, but having a shear-dependent activation energy at constant shear rate — proportional to the volume fraction of the polymer matrix. Superposition of the flow curves at different temperatures for the unfilled and filled systems was possible. All the data were represented by one equation with four parameters: 1) a shear stress coefficient (units Pa · s2); 2) a characteristic stress level for non-Newtonian behavior, independent of temperature and composition; 3) an activation energy at constant stress; and 4) an Einstein coefficient (or intrinsic viscosity of the filler). Other equations also fitted the data, but the others diverged widely when extrapolated.  相似文献   

4.
5.
Flow experiments through capillaries with 0.2% xanthan in aqueous solution and 0.1 N NaCl brine were carried out to study the influence of the molecular conformation on the flow development at relatively low shear rates, from 20s–1 to 400s–1. Capillaries with a wide range of length-to-diameter ratios, L/D = 4.5 to 1015 were used.The apparent viscosity as a function of L/D at a constant shear rate shows a continuous decrement of the viscosity as L/D increases, until an asymptotic value is reached. The decrement in the apparent viscosity is partially explained in terms of slip. It was found that slip is a function of L/D as well as shear stress, i.e., slip develops during flow, thus inducing spatial anisotropy in the fluid until a stable state is reached. However, the substantial difference in apparent viscosity between short capillaries and capillaries longer than 300 D may be attributed to dominant elongational flow due to the contraction in the small capillaries and slip in long capillaries.The flow in a sufficiently long capillary can be divided in four regions rather than three, as is usually assumed. In the first region, which corresponds to the entry, elongational and shear flow coexist and elongational flow dominant. In the second region, end effects and slip development are coupled. In the third region the flow is fully developed and end effects are negligible. However, the fluid shows physical characteristics different from those of the fluid at rest, as a consequence of prior slip development. The fourth zone is the exit region in which the velocity rearranges due to the change of boundary conditions. The length of each region depends on the conformation of the macromolecules and shear rate. In addition, it was found that the stiffness of xanthan increases with the increase of the ionic strength.Finally, a performance of Bagley's analysis in the whole range of L/D studied showed that the use of the Bagley correction is not a reliable way to correct for end effects when the flow is not fully developed and/or in the presence of slip.Dedicated to Arthur S. Lodge at the occasion of his 70th birthday and his retirement from the University of Wisconsin.  相似文献   

6.
We describe a magneto-slit die of 0.34 mm height and 4.25 mm width attached to a commercial piston capillary rheometer, enabling the measurement of apparent flow curves of a magnetorheological fluid (MRF) in the high shear rate regime (apparent shear rates 276 up to 20,700 s???1, magnetic flux density up to 300 mT). The pressure gradient in the magnetized slit is measured via two pressure holes. While the flux density versus coil current without MRF could directly be measured by means of a Hall probe, the flux density with MRF was investigated by finite element simulations using Maxwell® 2D. The true shear stress versus shear rate is obtained by means of the Weissenberg–Rabinowitsch correction. The slit die results are compared to plate–plate measurements performed in a shear rate regime of 0.46 up to 210 s???1. It is shown that the Casson model yields a pertinent fit of the true shear stress versus shear rate data from plate–plate geometry. Finally, a joint fit of the slit and plate–plate data covering a shear rate range of 1 up to 50,000 s???1 is presented, again using the Casson model. The parameterization of the MRF behavior over the full shear rate regime investigated is of relevance for the design of MR devices, like, e.g., automotive dampers. In the Appendix, we demonstrate the drawbacks of the Bingham model in describing the same data. We also show the parameterization of the flow curves by applying the Herschel–Bulkley model.  相似文献   

7.
Long-chain branched polypropylenes (LCB-PP) of different degrees of branching (up to 1 branch/104 carbon atoms) and a linear polypropylene (L-PP) are deformed at different shear conditions (rate, time and deformation) leading to reversible modifications of the entanglement structure. These modifications recover with time. Because of it the intensity of the modification and the rate of recovery are studied. At shear rates between 1?s?1 and 10?s?1 lower rates modify stronger. The intensity increases with shear time to a maximum at times of about 1 h where the final deformation does not control the intensity. Obviously, the disentanglement created by shearing competes with the Brownian motion coupling entanglements. Also, the intensity increases with the degree of LCB where the increase is stronger at low degrees. The rate of recovery not influenced noticeably by the initial modification strongly depends on the degree of LCB. The pertinent recovery functions grow exponentially to the limiting value of the unmodified state. Three different recovery processes are found. The fastest one with a recovery time shorter than 103?s is assigned to linear chains. The process with a time of about 5·103?s independent of the degree of LCB is assumed to describe the recovery of the backbones. The times for the very slow recovery of the side chains increase with the degree of LCB (between 104 and 105?s for the investigated samples). The recovery strength reflects the initial modification and depends on the degree of LCB. By that, the recovery behaviour provides information on the molecular structure.  相似文献   

8.
An Australian hard wheat flour–water dough has been characterised using parallel plate and capillary rheometers over an extensive range of apparent shear rates (10 − 3–103 s − 1) relevant to process conditions. Torsional measurements showed that the shear viscosity of the dough increased with strain to a maximum value and then decreased, suggesting a breakdown of the dough structure. Both torsional and capillary experiments revealed the shear-thinning behaviour of the dough. The wall slip phenomenon in capillary rheometry was investigated and found to be diameter dependent and occurred at a critical shear stress of approximately 5–10 kPa. A two-regime power law behaviour was observed, with the power law index approximately 0.3 in the low shear rate range increasing to 0.67 in the high shear rate range. Pressure fluctuation was observed in the capillary data and increased with shear rate, in particular, at shear rates approaching 104 s − 1. The results demonstrate that capillary rheometry is a viable means of rheologically testing dough at high shear rates provided pressure fluctuation is carefully monitored and capillary rheometry corrections, including wall slip, are accounted for.  相似文献   

9.
The excess thermal noise generated in polymer solutions through narrow capillaries is studied in detail for aqueous solutions of poly(ethylene oxide), , of varying concentration. With increasing flow rate, the excess noise level increases, the noise spectrum assuming a 1/f -form with 1.5. Within a critical flow range, distinct peaks appear in the spectrum, their frequencies being multiples of a fundamental frequency. The latter frequency (f 0) is found to increase with the flow rate; this variation, as well as that brought about by varying concentration and capillary dimensions, can be accommodated in a single curve correlatingf 0 with the shear rate at the capillary wall. No such correlation was found for the total noise level. The value off 0 appeared to be determined by transversal oscillations of the liquid stream entering the capillary. Addition of small amounts of silica particles (Aerosil) led to the disappearance of the peaks in the spectrum.  相似文献   

10.
The behaviour of an aqueous poly(ethylene oxide) sucrose solution and of a suspension of glass beads in a similar solution has been examined in elongational flow using a spinline rheometer. Over the accessible strain-rate range of ca. 1 to 10 s?1 these fluids behaved essentially as elastic materials whereas, at similar strain rates in shear, they show shear-thinning behaviour.  相似文献   

11.
We study the stability of flow in a heated capillary tube with an evaporating meniscus. The behavior of the vapor/liquid system, which undergoes small perturbations, is analyzed by linear approximation, in the frame of a one-dimensional model of capillary flow, with a distinct interface. The effect of the physical properties of both phases, the wall heat flux and the capillary sizes, on the flow stability is studied. The velocity, pressure and temperature oscillations in a capillary tube with a constant wall heat flux or a constant wall temperature are determined. A scenario of a possible process at small and moderate Peclet numbers corresponding to the flow in capillaries is considered. The boundaries of stability, subdividing the domains of stable and unstable flows, are outlined, and the values of geometrical and operating parameters corresponding to the transition from stable to unstable flow are estimated. It is shown that the stable capillary flow occurs at relatively small wall heat fluxes, whereas at high ones, the flow is unstable, with continuously growing velocity, pressure and temperature oscillations.  相似文献   

12.
A kerosene-based aircraft safety fuel and aqueous solutions of poly (ethylene oxide) and polyacrylamide are examined using the “triple jet” system. This device allows the solution to be stretched as it flows from a capillary tube and the axial stress, strain and strain rate in the liquid are measured.The shear history of the solution is altered by placing cylindrical inserts in the capillary tube. This is shown to have a large effect on the extensional behaviour of aircraft safety fuel, a moderate effect on the extensional behaviour of poly (ethylene oxide) solution and little effect on the behaviour of polyacrylamide solution. The extensional viscosity of the aircraft fuel is raised by an order of magnitude when a long period of high shear is used; the effects last for periods of up to one second, though traditional methods suggest a relaxation time of the order of 10?3 seconds. A liquid of shear viscosity 4 centipoise may have an extensional viscosity of over 100 poise.Plots of the extensional modulus of the jet as a function of distance along the jet emphasize the importance of shear history for the first two types of solution and suggest that the latter stages of the stretching process are elastic in character. Typical extensional moduli for the solutions tested are in the range 1.3–5.0 × 104 dyn.cm?2.The relevance of the interplay between shearing and stretching flow to the phenomena of lubrication and turbulence suppression is mentioned.  相似文献   

13.
The paper describes pertinent laboratory tests to characterize the rheological properties of paper coatings with regard to blade coating over a very wide range of shear rates in both transient and steady-state shear flows. Shear rates as high as 106 s–1 can be reached by means of a gas-driven capillary rheometer. Examples for the evaluation of end effects, wall effects, and coating thixotropy are given. A stiff and fast Couette rheometer is used to determine flow curves and the shear stress overshoot in step shear rate tests. The primary normal stress difference can be measured up to 104 s–1 by means of a high shear cone-plate rheometer with piezo transducer. A correct evaluation of the measurements has to take into account inertia contributions to the normal force. First results using a sinusoidal modulation of the shear rate are presented.Paper presented at: International Symposium on Pigment Coating Structure and Rheology, Helsinki, Febr. 8–9, 1989  相似文献   

14.
The main objective of this study is to characterize the mechanical behaviour of an Al-Mg alloy in conditions close to those encountered during sheet forming processes, i.e. with strain path changes and at strain rates and temperatures in the range 1.2×10?3–1.2×10?1 s?1 and 25–200°C, respectively. The onset of jerky flow and the interaction of dynamic strain ageing with the work-hardening are investigated during reversed-loading in specific simple shear tests, which consist of loading up to various shear strain values followed by reloading in the opposite direction, combined with direct observations of the sample surface using a digital image correlation technique. Both strain path changes and temperature are clearly shown to influence the occurrence and onset of the Portevin-Le Chatelier (PLC) effect. Moreover, the Bauschinger effect observed in the material response shows that the PLC effect has a major influence on the kinematic contribution to work-hardening as well as its stagnation during the reloading stage, which could open up interesting lines of research to improve theoretical plasticity models for this family of aluminium alloys.  相似文献   

15.
Chemical mechanical polishing is a fundamental technology used in the semiconductor manufacturing industry to polish and planarize a wide range of materials for the fabrication of microelectronic devices. During the high-shear (~1,000,000 s?1) polishing process, it is hypothesized that individual slurry particles are driven together to form large agglomerates (≥0.5 µm). These agglomerates are believed to trigger a shear-induced thickening effect and cause defects during polishing. We examined how the addition of various monovalent salts (CsCl, KCl, LiCl, and NaCl) and electrostatic stabilizing bases (KOH, NaOH, or CsOH) influenced the slurry’s thickening behavior. Overall, as the added salt concentration was increased from 0.02 to 0.15 M, the shear rate at which the slurry thickened (i.e., the critical shear rate) decreased. Slurries with added CsCl, NaCl, and LiCl thickened at comparable shear rates (~20,000–70,000 s?1) and, in general, followed ion hydration theory (poorly hydrated ions caused the slurry to thicken at lower shear rates). However, slurries with added KCl portrayed thickening behavior at higher critical shear rates (~35,000–100,000 s?1) than other chloride salts. Also, slurries stabilized with CsOH thickened at higher shear rates (~90,000–140,000 s?1), regardless of the added salt cation or concentration, than the slurries with KOH or NaOH. The NaOH-stabilized slurries displayed thickening at the lowest shear rates (~20,000 s?1). The thickening dependence on slurry base cation indicates the existence of additional close-range structure forces that are not predicted by the Derjaguin–Landau–Verwey–Overbeek colloidal stability theory.  相似文献   

16.
Distributions of shear strains and strain states (triaxiality) were analysed for two in-plane shear test fixtures (Iosipescu and V-notched rail), using digital image correlation and numerical simulations. Three different polypropylene-based materials (two talc-filled compounds and one unfilled homopolymer) were tested. The three materials behaved differently in the shear tests. Most notably, cracks developed in tension near the notches for the particle-filled materials, while the unfilled homopolymer did not fracture. There were also differences between the materials regarding strain localisation between the notches, strain rates vs. strain level (for a given cross-head speed), thickness change in the sheared section, and triaxiality. The yield stresses in shear, uniaxial tension and uniaxial compression showed pressure sensitivity. At least for equivalent strain rates below 1?s?1, the strain rate sensitivity of the yield stress was approximately the same in these three stress states. The stress?Cstrain curves obtained with the two methods were quite similar for these materials. There were some differences between the methods regarding the ease of mounting and aligning specimens, the complexity of specimen deformation patterns, and the uniformity of the shear strain distribution between the notches.  相似文献   

17.
The observation made in Part 2 that squeezing flow with a superimposed rotation results in an equilibrium situation with the applied load just balancing the normal stresses generated in the test fluid is used to develop a new technique (the Torsional-Balance Rheometer) for measuring the viscometric functions of elastic liquids.The Rheometer utilizes conventional torsional flow and its novel feature is that the applied load is fixed and the associated shear rate at the rim determined, in contrast to the usual situation where the shear rate is fixed and the total normal force measured.It is argued that the Torsional Balance has significant advantages over other rheometers in the very high shear-rate range, since the normal stresses being measured themselves supply a mechanism for keeping the top plate (which is free to float on the test fluid) at a constant separation from the rotating bottom plate, hence allowing very small gaps to be considered. Consistent data are shown to be possible for shear rates in excess of 105 s?1.  相似文献   

18.
Flow past a circular cylinder for Re=100 to 107 is studied numerically by solving the unsteady incompressible two‐dimensional Navier–Stokes equations via a stabilized finite element formulation. It is well known that beyond Re ~ 200 the flow develops significant three‐dimensional features. Therefore, two‐dimensional computations are expected to fall well short of predicting the flow accurately at high Re. It is fairly well accepted that the shear layer instability is primarily a two‐dimensional phenomenon. The frequency of the shear layer vortices, from the present computations, agree quite well with the Re0.67 variation observed by other researchers from experimental measurements. The main objective of this paper is to investigate a possible relationship between the drag crisis (sudden loss of drag at Re ~ 2 × 105) and the instability of the separated shear layer. As Re is increased the transition point of shear layer, beyond which it is unstable, moves upstream. At the critical Reynolds number the transition point is located very close to the point of flow separation. As a result, the shear layer eddies cause mixing of the flow in the boundary layer. This energizes the boundary layer and leads to its reattachment. The delay in flow separation is associated with narrowing of wake, increase in Reynolds shear stress near the shoulder of the cylinder and a significant reduction in the drag and base suction coefficients. The spatial and temporal power spectra for the kinetic energy of the Re=106 flow are computed. As in two‐dimensional isotropic turbulence, E(k) varies as k?5/3 for wavenumbers higher than energy injection scale and as k?3 for lower wavenumbers. The present computations suggest that the shear layer vortices play a major role in the transition of boundary layer from laminar to turbulent state. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
 Various grades of polypropylene were melt blended with a thermotropic liquid crystalline polymer, a block copolymer of p-hydroxy benzoic acid and ethylene terephthalate (60/40 mole ratio). The blends were extruded as cast films at different values of draw ratio (slit width/film thickness). Fibrillation of TLCP dispersed phase with high fiber aspect ratio (length/width) was obtained with the matrix of low melt flow rate, i.e., high viscosity and with increasing film drawing. Melt viscosities of pure components and blends measured using capillary rheometer were found to decrease with increasing shear rate and temperature. Viscosity ratios (dispersed phase to matrix phase) of the systems being investigated at 255 °C at the shear rate ranged from 102 to 104 s−1, were found to lie between 0.04 and 0.15. The addition of a few percent of elastomeric compatibilizers; a tri-block copolymer SEBS, EPDM rubber and maleated-EPDM, was found to affect the melt viscosity of the blend and hence the morphology. Among these three compatibilizers, SEBS was found to provide the best fibrillation. Received: 10 January 2000/Accepted: 24 January 2000  相似文献   

20.
Long glass fiber-filled polypropylene (PP) composites are produced by pultrusion, and the extrudate is cut at different lengths producing composites containing long fibers of controlled length. The rheological properties of such composites in the molten state have been studied using different rheometers. A capillary rheometer has been constructed and mounted on a molding-injection machine. The shear viscosity of filled PP determined from the capillary rheometer, after corrections for entrance effects, was found to be very close to that of unfilled PP. However, large excess pressure losses at the capillary entrance were observed and these data have been used to obtain an apparent elongational viscosity. The apparent elongational viscosity was shown to be considerably larger than the shear viscosity for PP and filled PP, and it increased markedly with fiber length and fiber content. Rotational rheometers with a parallel-plate geometry were used to investigate the viscoelastic properties of these composites and their behavior was found to be non-linear, exhibiting a yield stress. A model is proposed to describe the shear viscosity from a solid-like behavior at low stresses to fluid-like behavior at high shear stresses taking into account fiber content and orientation. A modified model, proposed for elongational flow, describes relatively well the apparent elongational data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号