首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We characterize the matrices A for which X(b)={xxRn, x?0, Ax?b, σni=1xi=1} contains a least majorized element for all vectors b satisfying X(b)≠?.  相似文献   

2.
3.
Let φ and ψ be any norms on Rm and Rn respectively. We study a subgradient method for computing the associated bound norm Sφψ(A) = sup{φ(Ax), ψ(x)?1} (a nonconvex optimization problem). It is proved that homodual method converges when one of the norms φ and ψ is polyhedral.  相似文献   

4.
Given a lattice Λ ? Rn and a bounded function g(x), xRn, vanishing outside of a bounded set, the functions ?(x)g?(x)?maxu∈Λg(u +x), ?(x)?Σu∈Λ g(u +x), and ?+(x)?Σu∈Λ maxv∈Λ min {g(v + x); g(u + v + x)} are defined and periodic mod Λ on Rn. In the paper we prove that ?(x) + ?+(x) ? 2?(x) ≥ ?(x) + h?+(x) ? 2?(x) holds for all xRn, where h(x) is any “truncation” of g by a constant c ≥ 0, i.e., any function of the form h(x)?g(x) if g(x) ≤ c and h(x)?c if g(x) > c. This inequality easily implies some known estimations in the geometry of numbers due to Rado [1] and Cassels [2]. Moreover, some sharper and more general results are also derived from it. In the paper another inequality of a similar type is also proved.  相似文献   

5.
This paper presents a demonstrably convergent method of feasible directions for solving the problem min{φ(ξ)| gi(ξ)?0i=1,2,…,m}, which approximates, adaptively, both φ(x) and ▽φ(x). These approximations are necessitated by the fact that in certain problems, such as when φ(x) = max{f(x, y) ¦ y ? Ωy}, a precise evaluation of φ(x) and ▽φ(x) is extremely costly. The adaptive procedure progressively refines the precision of the approximations as an optimum is approached and as a result should be much more efficient than fixed precision algorithms.It is outlined how this new algorithm can be used for solving problems of the form miny ? Ωxmaxy ? Ωyf(x, y) under the assumption that Ωmξ={x|gi(x)?0, j=1,…,s} ∩Rn, Ωy={y|ζi(y)?0, i-1,…,t} ∩ Rm, with f, gj, ζi continuously differentiable, f(x, ·) concave, ζi convex for i = 1,…, t, and Ωx, Ωy compact.  相似文献   

6.
Let X be a finite-dimensional compactum. Let R(X) and N(X) be the spaces of retractions and non-deformation retractions of X, respectively, with the compact-open (=sup-metric) topology. Let 2Xh be the space of non-empty compact ANR subsets of X with topology induced by the homotopy metric. Let RXh be the subspace of 2Xh consisting of the ANR's in X that are retracts of X.We show that N(Sm) is simply-connected for m > 1. We show that if X is an ANR and A0?RXh, then limi→∞Ai=A0 in 2Xh if and only if for every retraction r0 of X onto A0 there are, for almost all i, retractions ri of X onto Ai such that limi→∞ri=ro in R(X). We show that if X is an ANR, then the local connectedness of R(X) implies that of RXh. We prove that R(M) is locally connected if M is a closed surface. We give examples to show how some of our results weaken when X is not assumed to be an ANR.  相似文献   

7.
In this paper we establish maximum principles of the Cauchy problem for hyperbolic equations in R3 and Rn + 1(n ? 2). Our maximum principles generalize the results of Weinberger [5], and Sather [3, 4] for a class of equations such that the coefficients can be allowed to depend upon t, as well, in {x1, x2, t}-space and {x1, x2,…, xn, t}-space. Throughout this paper, the influence of the work of Douglis [1] is apparent. See [2].  相似文献   

8.
In this paper we discuss the problem of determining a T-periodic solution x1(·, λ) of the differential equation x = A(t)x + f(t, x, λ) + b(t), where the perturbation parameter λ is a vector in a parameter-space Rk. The customary approach assumes that λ = λ(?), ??R. One then establishes the existence of an ?0 > 0 such that the differential equation has a T-periodic solution x1(·, λ(?)) for all ? satisfying 0 < ? < ?0. More specifically it is usually assumed that λ(?) has the form λ(?) = 0 where λ0 is a fixed vector in Rk. This means that attention is confined in the perturbation procedure to examining the dependence of x1(·, λ) on λ as λ varies along a line segment terminating at the origin in the parameter-space Rk. The results established here generalize this previous work by allowing one to study the dependence of x1(·, λ) on λ as λ varies through a “conical-horn” whose vertex rests at the origin in Rk. In the process an implicit-function formula is developed which is of some interest in its own right.  相似文献   

9.
Let x?Sn, the symmetric group on n symbols. Let θ? Aut(Sn) and let the automorphim order of x with respect to θ be defined by
γθ(x)=min{k:x xθ xθ2 ? xθk?1=1}
where is the image of x under θ. Let αg? Aut(Sn) denote conjugation by the element g?Sn. Let b(g; s, k : n) ≡ ∥{x ? Sn : kγαg(x)sk}∥ where s and k are positive integers and ab denotes a divides b. Further h(s, k : n) ≡ b(1; s, k : n), where 1 denotes the identity automorphim. If g?Sn let c = f(g, s) denote the number of symbols in g which are in cycles of length not dividing the integer s, and let gs denote the product of all cycles in g whose lengths do not divide s. Then gs moves c symbols. The main results proved are: (1) recursion: if n ? c + 1 and t = n ? c ? 1 then b(g; s, 1:n)=∑is b(g; s, 1:n?1)(ti?1(i?1)! (2) reduction: b(g; s, 1 : c)h(s, 1 : i) = b(g; s, 1 : i + c); (3) distribution: let D(θ, n) ≡ {(k, b) : k?Z+ and b = b(θ; 1, k : n) ≠ 0}; then D(θ, m) = D(φ, m) ∨ m ? N = N(θ, φ) iff θ is conjugate to φ; (4) evaluation: the number of cycles in gss of any given length is smaller than the smallest prime dividing s iff b(gs; s, 1 : c) = 1. If g = (12 … pm)t and skpm then b(g;s,k:pm) {0±1(mod p).  相似文献   

10.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

11.
We consider the generalized Korteweg–de Vries equations in the subcritical and critical cases. Let Rj(t,x)=Qcj(x?cjt?xj) be N soliton solutions of this equation, with corresponding speeds 0<c1<c2<?<cN. In this Note, we give a sketch of the proof of the following result. Given {cj},{xj}, there exists one and only one solution ? of the generalized KdV equation such that 6?(t)?∑Rj(t)6H1→0 as t→+∞. Complete proofs will appear later. To cite this article: Y. Martel, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  相似文献   

12.
Given the data (xi, yi), i=1, 2, …, n, the problem is to find the values of the linear and nonlinear parameters â and b? which minimize the nonlinear functional |F(b)a?y|22 over a ? Rp, b ? Rq, where F ? Rn×p is a variable matrix and assumed to be of full rank, and y ? Rn is a constant vector.In this paper, we present a method for solving this problem by imbedding it into a one-parameter family of problems and by following its solution path using a predictor-corrector algorithm. In the course of iterations, the original problem containing p+q+1 variables is transformed into a problem with q+1 nonlinear variables by taking the separable structure of the problem into account. By doing so, the method reduces to solving a series of equations of smaller size and a considerable saving in the storage is obtained.Results of numerical experiments are reported to demonstrate the effectiveness of the proposed method.  相似文献   

13.
Using old results on the explicit calculation of determinants, formulae are given for the coefficients of P0(z) and P0(z)fi(z) ? Pi(z), where Pi(z) are polynomials of degree σ ? ρi (i=0,1,…,n), P0(z)fi(z) ? Pi(z) are power series in which the terms with zk, 0?k?σ, vanish (i=1,2,…,n), (ρ0,ρ1,…,ρn) is an (n+1)-tuple of nonnegative integers, σ=ρ0+ρ1+?+ρn, and {fi}ni=1 is the set of hypergeometric functions {1F1(1;ci;z)}ni=1(ci?Zz.drule;N, ci ? cj?Z) or {2F0(ai,1;z)}ni=1(ai ?Z?N, ai ? aj?Z) under the condition ρ0?ρi ? 1 (i=1,2,…,n).  相似文献   

14.
Let H be a subset of the set Sn of all permutations
12???ns(1)s(2)???s(n)
C=6cij6 a real n?n matrix Lc(s)=c1s(1)+c2s(2)+???+cns(n) for s ? H. A pair (H, C) is the existencee of reals a1,b1,a2,b2,…an,bn, for which cij=a1+bj if (i,j)?D(H), where D(H)={(i,j):(?h?H)(j=h(i))}.For a pair (H,C) the specifity of it is proved in the case, when H is either a special cyclic class of permutations or a special union of cyclic classes. Specific pairs with minimal sets H are in some sense described.  相似文献   

15.
In connection with an optimization problem, all functions ?: InR with continuous nonzero partial derivatives and satisfying
???x,i???xj
for all xi, xjI, i, j = 1,2,…, n (n > 2) are determined (I is an interval of positive real numbers).  相似文献   

16.
Let Ω be a smooth bounded domain in RN. Assume that f?0 is a C1-function on [0,∞) such that f(u)/u is increasing on (0,+∞). Let a be a real number and let b?0, b?0 be a continuous function such that b≡0 on . The purpose of this Note is to establish the asymptotic behaviour of the unique positive solution of the logistic problem Δu+au=b(x)f(u) in Ω, subject to the singular boundary condition u(x)→+∞ as dist(x,?Ω)→0. Our analysis is based on the Karamata regular variation theory. To cite this article: F.-C. Cîrstea, V. R?dulescu, C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

17.
This paper presents sufficient conditions for the existence of a nonnegative and stable equilibrium point of a dynamical system of Volterra type, (1) (ddt) xi(t) = ?xi(t)[fi(x1(t),…, xn(t)) ? qi], i = 1,…, n, for every q = (q1,…, qn)T?Rn. Results of a nonlinear complementarity problem are applied to obtain the conditions. System (1) has a nonnegative and stable equilibrium point if (i) f(x) = (f1(x),…,fn(x))T is a continuous and differentiable M-function and it satisfies a certain surjectivity property, or (ii), f(x) is continuous and strongly monotone on R+0n.  相似文献   

18.
Let A0x=b0 be a consistent (but possibly unknown) linear algebraic system of m equations in n unknowns, with rank(A0)=k (likewise possibly unknown). Let Ax=b be a known (but possibly inconsistent) nearby system. Procedures for “solving” Ax=b usually replace it (at least in principle) by a nearby consistent system A?x=b? of (hopefully) rank k, and solve that one instead. We consider consistent systems A?x=b? with rank(A?)=k such that (Ã,b?) is the orthogonal projection of (A,b) on span(Ã) [i.e., the columns of (Ãb?) are the projections of those of (Ab)]. Under suitable circumstances the rank k pair (Ã,b?) nearest to (A,b) in the sense of minimizing 6(A?b?) ? (A?b?)6F belongs to this class, as well as the pair delivered by the ordinary least squares method (if k=n?m) or, more generally, the pair delivered by a well-known algorithm (viz. HFTI). If ?:= |(A┆b)?(A0┆b0)6F, then the minimum length solutions of all systems A?x=b? so related to (A,b) are shown to differ mutually only by O(?2). This means, e.g., that itwill usually not pay to compute the solution of the nearest system.  相似文献   

19.
We show that if F, X are two locally convex spaces and h: F → R?, ?: F × X → R are two convex functionals satisfying h(y) = ?(y, x0) (y?F) for some x0?X, then, under suitable assumptions, the computation of inf h(F) can be reduced to the computation of inf ?(H) on certain hyperplanes H of F × X. We give some applications.  相似文献   

20.
In connection with the problem of finding the best projections of k-dimensional spaces embedded in n-dimensional spaces Hermann König asked: Given mR and nN, are there n×n matrices C=(cij), i, j=1,…,n, such that cii=m for all i, |cij|=1 for ij, and C2=(m2+n?1)In? König was especially interested in symmetric C, and we find some families of matrices satisfying this condition. We also find some families of matrices satisfying the less restrictive condition CCT=(m2+n?1)In.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号