首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the use of activation energy versus activation volume "master plots" to explore ion transport in typical fragile glass forming systems exhibiting non-Arrhenius behavior. These systems include solvent-free salt complexes in poly(ethylene oxide) (PEO) and low molecular weight poly(propylene oxide) (PPO) and molten 2Ca(NO3)2.3KNO3 (CKN). Plots showing variations in apparent activation energy EA versus apparent activation volume VA are straight lines with slopes given by M = DeltaEA/DeltaVA. A simple ion transport mechanism is described where the rate determining step involves a dilatation (expressed as VA) around microscopic cavities and a corresponding work of expansion (EA). The slopes of the master plots M are equated to internal elastic moduli, which vary from 1.1 GPa for liquid PPO to 5.0 GPa for molten CKN on account of differing intermolecular forces in these materials.  相似文献   

2.
人造岩石固wx 包容锕系核素废物   总被引:5,自引:0,他引:5  
罗上庚  杨建文  朱鑫璋 《化学学报》2000,58(12):1608-1614
研究了富钙钛锆石型和富烧绿石型两种人造岩石固化体包容锕系核素的配方设计和固化产品的鉴定评价,包括物理性能、抗浸出性能和耐辐照性能。采用了X射线衍射(XRD)、扫描电镜/能谱分析(SEM/EDS)和透射电镜/能谱分析(TEM/EDS)研究了矿相组合、元素分布和矿相化学组成等。研究表明,富钙钛锆石和富烧绿石型人造岩石都能很好地固化包容锕系核素废物。  相似文献   

3.
<正>LiMn_2O_4 spinel cathode materials were modified with 2 wt.%Li-M-PO_4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn_2O_4 cathode materials were physically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).The charge-discharge test showed that the cycling and rate capacities of LiMn_2O_4 cathode materials were significantly enhanced by stabilizing the electrode surface with phosphate.  相似文献   

4.
The development of the microcalorimeter energy-dispersive X-ray spectrometer (µ-cal EDS) offers a significant advancement in X-ray microanalysis, especially for electron beam instruments. The benefits are especially pronounced for low voltage (5kV) X-ray microanalysis in the field emission scanning electron microscope (FE-SEM) where the high energy resolution of the µ-cal EDS minimizes the peak overlaps among the myriad of K, L, M and N lines in the 0–5keV energy range. The availability of L- and M-shell X-ray lines for microanalysis somewhat offsets the absence of X-ray lines traditionally used above 5keV energy. The benefits and challenges of the µ-cal EDS will be discussed, including P/B ratio for characteristic X-rays, collection angle, count rate capability and the impact of polycapillary X-ray optics on microanalysis.  相似文献   

5.
Chemicals from customers' returns have to be analyzed before they can be reused as raw materials in production. A procedure for non-invasive qualitative analysis of compounds in a closed container based on energy dispersive X-ray fluorescence (EDXRF) spectrometry is described. EDXRF was chosen as method for noninvasive analysis of chemicals through PE bottle walls without opening the bottle. This analysis aims for a quick proof of correspondence between the declaration of a reagent on the label of the bottle and its content. This analytical result cannot be achieved by a mere evaluation of characteristic element lines in EDXRF-spectra in combination with the method of matrix correction or the method of mean atomic number. These methods take into account only a small part of the total information available in an X-ray spectrum. It is shown here that valuable additional information is extractable from the spectral ranges of the Compton-scattering and Rayleigh-scattering areas by the use of methods of multivariate data analysis, especially by principle component analysis (PCA). Regularized discriminant analysis (RDA) was employed to establish a classification scheme for unknown samples.  相似文献   

6.
Chemicals from customers’ returns have to be analyzed before they can be reused as raw materials in production. A procedure for non-invasive qualitative analysis of compounds in a closed container based on energy dispersive X-ray fluorescence (EDXRF) spectrometry is described. EDXRF was chosen as method for non-invasive analysis of chemicals through PE bottle walls without opening the bottle. This analysis aims for a quick proof of correspondence between the declaration of a reagent on the label of the bottle and its content. This analytical result cannot be achieved by a mere evaluation of characteristic element lines in EDXRF-spectra in combination with the method of matrix correction or the method of mean atomic number. These methods take into account only a small part of the total information available in an X-ray spectrum. It is shown here that valuable additional information is extractable from the spectral ranges of the Compton-scattering and Rayleigh-scattering areas by the use of methods of multivariate data analysis, especially by principle component analysis (PCA). Regularized discriminant analysis (RDA) was employed to establish a classification scheme for unknown samples.  相似文献   

7.
A new rapid method for the determination of actinides in emergency concrete and brick samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or nuclear accident occurs, there will be a urgent need for rapid analyses of many different environmental matrices, including building materials such as concrete and brick, to support dose mitigation and environmental clean-up. The new method for actinides in concrete and brick method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a column separation process with stacked TEVA, TRU and DGA Resin cartridges. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. The determination of actinides in concrete and brick sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles are effectively digested.  相似文献   

8.
We report the synthesis, characterization, and catalytic activity of bimetallic palladium-platinum dendrimer-encapsulated catalysts (DECs). These materials are prepared by co-complexation of different ratios of palladium and platinum salts to the interior tertiary amines of fourth-generation, hydroxyl-terminated poly(amidoamine) (PAMAM) dendrimers. Chemical reduction of these composites yields stable, fairly monodisperse, water-soluble bimetallic DECs having sizes on the order of 1.9 +/- 0.4 nm. Evidence that these nanoparticles are bimetallic comes from single-particle X-ray energy dispersive spectroscopy (EDS) and catalysis experiments. The latter indicate that the hydrogenation rate of allyl alcohol is enhanced in the presence of the bimetallic nanoparticles compared to DECs containing only platinum or only palladium nanoparticles. EDS results indicate that the percentage composition of the bimetallics is reflected by the percentage of metal salts initially complexed with the dendrimer.  相似文献   

9.
PdCu/C (XC-72) electrocatalyst was synthesized by a chemical reduction method using ethylene glycol as reaction media, polyvinylpyrrolidone as surfactant and sodium borohydride as reducing agent. Vulcan carbon XC-72 was employed as support and added through the PdCu synthesis procedure; further, Pd commercial (Pd/C, 20% ETEK) was used for comparison purposes. Physicochemical characterization consisted in XRD, XRF, EDS and TEM analyses. TEM micrographs showed the presence of semi-spherical nanoparticles with a particle distribution around 6 nm. X-ray diffraction patterns showed the typical face-centered cubic structure of Pd materials for commercial Pd and revealed a low crystallinity for PdCu/C. The XRF analysis showed a mass metal composition of 81% Pd and 19% Cu. EDS analysis was made to single particles exhibiting an average elemental composition of 92% Pd and 8% Cu. The electrocatalytic activity of PdCu/C and Pd/C was evaluated by cyclic voltammetry experiments toward ethylene glycol and glycerol oxidations using three concentrations (0.1, 1 and 3 M) and 0.3 M KOH as electrolyte. These experiments exhibited the superior performance of PdCu compared with commercial Pd by means of current densities associated to the electro-oxidation reactions where values at least 3-fold higher than Pd/C were found.  相似文献   

10.
Electron-excited X-ray mapping is a key operational mode of the scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometry (EDS). The popularity of X-ray mapping persists despite the significant time penalty due to the relatively low output count rates, typically less than 25 kHz, that can be processed with the conventional EDS. The silicon drift detector (SDD) uses the same measurement physics, but modifications to the detector structure permit operation at a factor of 5-10 times higher than conventional EDS for the same resolution. Output count rates as high as 500 kHz can be achieved with 217 eV energy resolution (at MnKalpha). Such extraordinarily high count rates make possible X-ray mapping through the method of X-ray spectrum imaging, in which a complete spectrum is captured at each pixel of the scan. Useful compositional data can be captured in less than 200 s with a pixel density of 160 x 120. Applications to alloy and rock microstructures, ultrapure materials with rare inclusions, and aggregate particles with complex chemistry illustrate new approaches to characterization made practical by high-speed X-ray mapping with the SDD.Note: The Siegbahn notation for characteristic X-rays is commonly used in the field of electron beam X-ray spectrometry and will be used in this article. The equivalent IUPAC notation is indicated in parentheses at the first use.In this article, the following arbitrary definitions will be used when referring to concentration (C) ranges: major: C > 0.1 (10 wt%), minor: 0.01 相似文献   

11.
Aminoalkylsilanes with oligo(ethylene oxide) units were designed and synthesized as multifunctional electrolyte additives for lithium-ion batteries. The chemical structures were fully characterized by nuclear magnetic resonance (NMR) spectroscopy and their thermal properties, viscosities, electrochemical windows, and ionic conductivities were systematically measured. With adding one of these compounds (1 vol. %, DSC3N1) in the baseline electrolyte 1.0 M LiPF6 in EC: DEC (1:1, in volume), Li/LiCoO2 half cell tests showed an improved cyclability after 100 cycles and improved rate capability at 5C rate condition. Electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopic (EDS) analysis confirmed the acid scavenging function and film forming capability of DSC3N1. These results demonstrated that the multifunctional organosilicon compounds have considerable potential as additives for use in lithium-ion batteries.  相似文献   

12.
Hydrofluxes are hydrated salts with melting points well below that of the dehydrated salt and boiling points well above that of water, affording a reaction medium, in which mild temperatures and pressures can be accessed for the synthesis of materials. Herein, the use of alkali metal hydroxide hydrofluxes for the synthesis of single crystal α-Na2NpO4 is described, and the single crystal X-ray structure of α-Na2NpO4, along with its X-ray absorption spectra and vibrational spectra, is reported. The ability to synthesize complex oxides of the actinides, in particular, transuranium materials, under mild conditions will serve to advance our ability to explore the structure–property relationships of the f elements.  相似文献   

13.
The sustainability of the current nuclear fuel cycles is not completely achieved since they do not optimise the consumption of natural resource (only a very small part of uranium is burnt) and they do not ensure a complete and efficient recycling of the potential energetic material like the actinides. Promoting nuclear energy as a future energy source requires proposing new nuclear systems that could meet the criteria of sustainability in terms of durability, bearability and liveability. In particular, it requires shifting towards more efficient fuel cycles, in which natural resources are saved, nuclear waste are minimised, efficiently confined and safely disposed of, in which safety and proliferation-resistance are more than ever ensured. Such evolution will require (i) as a mandatory step, evolutionary recycling of the major actinides U and Pu up to their optimized use as energetic materials using fast neutron spectra, (ii) as an optional step, the implementation of the recycling of minor actinides which are the main contributors to the long term heat power and radiotoxicity of nuclear waste. Both options will require fast neutrons reactors to ensure an efficient consumption of actinides. In such a context, the back-end of the fuel cycle will be significantly modified: implementation of advanced treatment/recycling processes, minor-actinides recovery and transmutation, production of lighter final waste requiring lower repository space. In view of the 2012 French milestones in the framework of the 2006 Waste Management Act, this paper will depict the current state of development with regards with these perspectives and will enlighten the consequences for the subsequent nuclear waste management.  相似文献   

14.
The determination of actinides in environmental soil and sediment samples are very important for environmental monitoring. A rapid actinide separation method has been developed and implemented that allows measurement of U, Pu and Am isotopes in large soil samples (10–15 g) with high chemical yields and effective removal of matrix interferences. The radiochemical procedures involve the total dissolution of soil samples, separation on anion-exchange resin, and separation and purification by extraction chromatography, e.g., UTEVA, TEVA, and TRU with measurements of radionuclides by alpha-spectrometry. The validation of the method is performed through the analysis of reference materials or by participating in laboratory intercomparison programs.  相似文献   

15.
The structural and photoelectrochemical properties of mixed oxide semiconductor films of Bi-Nb-M-O (M = Al, Fe, Ga, In) were studied in order to explore their use as photoanodes in photoelectrochemical cells. These films were prepared on AISI/SAE 304 stainless steel plates by sol–gel dip-coating. The films were characterized by scanning electron microscopy—energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), and their photoelectrochemical properties were studied by open circuit potential (OCP) measurements, linear sweep voltammetry (LSV), and cyclic voltammetry (CV). SEM micrographs show homogeneous and rough films with agglomerates on the surface. EDS analyses show that the films are composed of Bi, Nb, and M, and the agglomerates are mainly composed of Bi. XRD analyses show a predominant crystalline phase of bismuth(III) oxide (Bi2O3) and a secondary phase composed of Bi-M mixed oxides. It is noteworthy that there was no identified niobium-based crystalline phase. XPS results reveal that the films are composed by Bi(III), Nb(V), and M(III). CV results show that the electrochemical behavior is attributed only to the semiconductor films which indicate a good coating of the stainless steel support. OCP measurements show that all the films have n-type semiconductor properties and exhibited photoresponse to the visible light irradiation. LSV results show that the application of a potential higher than +0.1 V enhances the photocurrent which can be attributed to an improved charge carrier separation. The results indicate that these materials can be used in photoelectrochemical cells.  相似文献   

16.
In our laboratories we have been studying the synthesis and reactivity of binary actinide and lanthanide intermetallic compounds. In this work, the air-oxidation of ThCu2 and AnNi2 (An = Th, U) was followed by thermogravimetry (TG) and the products were characterized by X-ray powder diffraction (XRD). The heterobimetallic oxides obtained are described by the formulas 2MO·ThO2 (M = Cu, Ni) and 2NiO·UO3. The thermogravimetric analysis under hydrogen of these heterobimetallic oxides show one mass loss for 2MO·ThO2 and two mass losses for 2NiO·UO3 over a wide range of temperature (293–1273 K). The characterization by XRD shows that the reduction products are 2M·ThO2 (M = Cu, Ni) and 2Ni·UO2, with all the actinides in the 4+ oxidation state. The actinide heterobimetallic oxides were described as copper or nickel supported catalysts.  相似文献   

17.
Specific features of elemental composition analysis of silicon carbonitride thin films by energy dispersive spectroscopy (EDS) are considered. The films were preliminarily examined by IR spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron (SEM) and atomic force microscopy (AFM), and X-ray diffraction analysis using synchrotron radiation (SR-XRD) to acquire data on their chemical and phase composition, crystalline structure and surface morphology. The effect of film thickness, substrate material and electron beam energy on the results of energy dispersive analysis was investigated.  相似文献   

18.
The present work deals with the synthesis, characterization, and photocatalytic studies of layered perovskites belonging to Aurivillius family. Layered perovskites of various chemical compositions, BiREWO6 (RE = La, Pr, Gd, and Dy), were synthesized by an ethylene glycol–assisted sol–gel method. These materials were characterized by X-ray diffraction, scanning electron microscopy–energy dispersive spectroscopy (EDS), Fourier transform infrared, Raman, and ultraviolet–visible diffuse reflectance techniques. The composition of all these materials was obtained from EDS. The unit cell lattice parameters were attained from Rietveld refinement program, Fullprof.2k, by refining the d-lines of BiREWO6. The band gap energy of these samples was obtained from the Kubelka–Munk plot. The photocatalytic activity of all the samples was evaluated by photodegradation of methylene blue. The mechanistic degradation pathway of methylene blue was studied using radical quenchers.  相似文献   

19.
Summary A series of calcium silicate hydrate (C-S-H)-polymer nanocomposite (C-S-HPN) materials were prepared by incorporating poly(vinyl alcohol) (PVA) into the inorganic layers of C-S-H during precipitation of quasicrystalline C-S-H from aqueous solution. The as synthesized C-S-HPN materials were characterized by Fourier-transform infrared photoacoustic (FTIRPAS) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy/energy dispersed spectroscopy (SEM/EDS), thermogravimetric analysis (TG), differential thermogravimetry (DTG) and differential scanning calorimetry (DSC). The XRD peaks of C-S-HPN materials suggest the intermediate organizations presenting both intercalation of PVA and exfoliation of C-S-H. The SEM micrographs of C-S-H, PVA and C-S-HPN materials with different PVA contents exhibit the significant differences in their morphologies. Effects of the material compositions on the thermal stability of a series of C-S-HPN materials along with PVA and C-S-H were studied by TG, DTG and DSC. Three significant decomposition temperature ranges were observed in the TG curves of all C-S-HPN materials.  相似文献   

20.
A calibration procedure for the detection efficiency of energy dispersive X-ray spectrometers (EDS) used in combination with scanning electron microscopy (SEM) for standardless electron probe microanalysis (EPMA) is presented. The procedure is based on the comparison of X-ray spectra from a reference material (RM) measured with the EDS to be calibrated and a reference EDS. The RM is certified by the line intensities in the X-ray spectrum recorded with a reference EDS and by its composition. The calibration of the reference EDS is performed using synchrotron radiation at the radiometry laboratory of the Physikalisch-Technische Bundesanstalt. Measurement of RM spectra and comparison of the specified line intensities enables a rapid efficiency calibration on most SEMs. The article reports on studies to prepare such a RM and on EDS calibration and proposes a methodology that could be implemented in current spectrometer software to enable the calibration with a minimum of operator assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号