首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A series of novel pyrazole, triazole based benzohydrazones ( 7a‐l ) were synthesized via conventional and microwave methods in the presence of acetic acid catalyst. Microwave method provided green and economical approach towards the synthesis of novel Schiff bases ( 7a‐l ). Some intermediates and all the final compounds were characterized by NMR, mass, and elemental analysis. The compounds were screened for their in vitro antibacterial activity against Gram‐negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram‐positive bacteria (Staphylococcus aureus and Bacillus cereus). Compounds 7e and 7g showed good antibacterial activity.  相似文献   

2.
A new 5‐arylidene‐4‐oxo‐(sulfonamoyl phenyl)‐spiro[thiazolidinone‐2,2′‐steroids] series (7–10) was prepared by condensation of sulfanilamide, sulfapyridine and sulfadiazine sulfa drugs with testosterone, epiandrosterone and progesterone steroids, respectively. The resultant imino derivatives 1–3 upon cycloaddition with thioacetic acid in dry 1,4‐dioxane afforded 3‐sulfo‐namoylphenylspiro[4‐oxo‐thiazolidin‐2,2′steroids] (4–6). The latter compounds (4–6) upon condensation with p‐fluorobenzaldehyde in ethanol‐piperidine yielded the corresponding 4‐fluoroarylidene derivatives 7, 8 & 9, respectively. All the newly synthesized compounds were confirmed by UV, IR, 1H NMR, 13C NMR, mass spectral data, elemental analysis and molecular weight determination. In vitro antimicrobial screening of some of the synthesized compounds showed good antimicrobial activities towards some pathogenic Gram‐positive, Gram‐negative bacteria and fungi vs. piperacillin and mycostatine antibiotics as standard antibacterial and antifungal agents, respectively. The voltammetric behavior of two newly spirothiazolidinone steroids ( 2a & 5a ) was critically studied. Compound 5a physically immobilized polyurethane foam solid sorbent was successfully used for removal and/or separation of bismuth(III) from water.  相似文献   

3.
A series of new symmetrical 3,6‐bis(aryl)bis([1,2,4]triazolo)[3,4‐a:4′,3′‐c]phthalazines 9a‐l has been conveniently synthesized by oxidative cyclization of 1,4‐bis(substituted benzalhydrazino)phthalazines 8a‐l promoted by iodobenzene diacetate under mild conditions (12 examples, up to 93% yield). All the 12 compounds were tested in vitro for their antibacterial activity against two Gram‐positive bacteria, namely, Staphylococcus aureus, Bacillus subtilis and two Gram‐negative bacteria, namely, Escherichia coli and Pseudomonas aeruginosa. All the synthesized compounds were also tested for their antifungal action against two fungi, Aspergillus niger and Aspergillus flavus.  相似文献   

4.
Thiazole and bisthiazole derivatives represent a prevalent scaffold in the antimicrobial drug discovery. Therefore, we have decided to synthesize some new series of 4,5′‐bisthiazoles. A total of 17 compounds were synthesized, their structural elucidation being based on elemental analysis (C,H,N,S) and spectroscopic data (MS and 1H NMR). Their in vitro antimicrobial activities were assessed against several Gram‐positive and Gram‐negative bacteria strains and also against one fungal strain (Candida albicans) using the difusimetric method. Some of the compounds showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus and Bacillus cereus bacterial strains. All of the synthesized compounds showed moderate to very good antifungal activity against C. albicans.  相似文献   

5.
Syntheses of some new heterocyclic compounds incorporating quinolone moieties were achieved via reaction of 4‐hydroxy‐7‐methoxyquinolin‐2(1H)‐one ( 1 ) or 3‐bromo‐4‐hydroxy‐7‐methoxyquinolin‐2(1H)‐one ( 2 ) with binucleophilic reagents. The newly synthesized compounds were characterized by elemental analyses and spectral data (IR, 1H‐NMR and mass spectra). The newly synthesized compounds were screened for their antibacterial activity against Gram‐positive bacteria (Bacillus thuringiensis) and Gram‐negative bacteria (Escherichia coli). The results showed clearly that compounds 1 and 3 are the more potent antibacterial agents against E. coli, compounds 4 , 5 , 6 and 8 , 9 , 10 , 11 , 12 , 13 exhibited moderate activities against E. coli strain, and compounds 7 and 11 exhibited weak activities compared with Gentamicin as a well known standard drug.  相似文献   

6.
A number of novel bicinnolines containing piperazine moieties, 4a – o , were synthesized via polyphosphoric acid‐catalyzed intramolecular cyclization of the respective acyl amidrazone derivatives ( 3a – o ). On the other hand, the amidrazones ( 3a – o ) were prepared by reaction of N′,N″‐(biphenyl‐4,4′‐diyl)bis(2‐oxopropane hydrazonoyl chloride) ( 2 ) with the appropriate cyclic sec‐amines in the presence of trimethylamine in absolute ethanol. Structures of the newly synthesized compounds were confirmed by NMR and mass spectral data. The antitumor activity of compounds 4a – o was evaluated in vitro on human breast cancer MDA‐231 by a cell viability assay. Results revealed that compounds 4k , 4n , and 4o exhibit potential cytotoxic effects (>70%) on the cancer cells. Additionally, the antimicrobial activity of compounds 4a – o was evaluated against three clinical microbial strains: Escherichia coli (Gram‐negative bacteria), Staphylococcus aureus (Gram‐positive bacteria), and Candida albicans (fungi/yeast). Results revealed that compounds 4e and 4k exhibit good activity against all three strains included in the study and that compound 4d displays excellent activity against Saureus strain with a minimum inhibitory concentration value of 0.187 mg/mL.  相似文献   

7.
(1,5‐Dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)carbono‐hydrazonoyl dicyanide was used as a key intermediate for the synthesis of novel pyrazole, isoxazole, pyrimidine, and pyridazine derivatives. The newly synthesized compounds were characterized by elemental analyses and spectral data (IR, 1H‐NMR, 13C‐NMR, and mass spectra). The compounds were tested for their in vitro antibacterial activity against Gram‐positive bacteria as (Staphylococcus aureus and Bacillus subtilis ) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli ). The investigated compounds were tested against two strains of fungi Botrytis fabae and Fusarium oxysporum using diffusion agar technique. The biological results showed clearly that most of the synthesized compounds revealed mild to moderate activity against the used microorganisms.  相似文献   

8.
A simple environmentally friendly solid‐phase microwave‐assisted method was used to synthesis of the 1,3′‐diazaflavanone ( 2 ) and 1,3′‐diazaflavone ( 3 ) from the cyclization of 2′‐amino (E)‐3″‐azachalcone ( 1 ). Ten new N‐alkyl (C5–12,14,15)‐substituted 1,3′‐diazaflavanonium bromides ( 2a–j ) were prepared from compound 2 with corresponding alkyl halides in acetonitrile under reflux. In addition, nine new N,N′‐dialkyl (C5–12,14)‐substituted 1,3′‐diazaflavonium bromides ( 3a–i ) were also synthesized from compound 3 with corresponding alkyl halides using basic silica in acetonitrile. The antimicrobial activities of compounds 1–3 , 2a–j , and 3a–i were tested against Gram‐positive (G+) (Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus, and Enterococcus faecalis) and Gram‐negative (G?) (Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhimirium, Yersinia pseudotuberculosis, and Enterobacter cloaceae) microorganisms. They showed good antimicrobial activity against the Gram‐positive bacteria tested with the minimal inhibitory concentration values less than 7.8 μg/mL in most cases. The optimum length of the alkyl chain for better and broader activity is situated in the range of 9–12 carbon atoms in the series of compounds 2a–j and five to six carbon atoms in the series of compounds 3a–i . The nonalkylated compounds 1–3 were not effective, as were the ones alkylated with five or six C alkyl groups ( 2a and 2b ) and 8–13 C alkyl groups for N,N′‐dialkyl compounds ( 3c–3i ). The antimicrobial activity increased as the length of the alkyl substitution increased from 8 to 12 carbons in compounds 2a–j . However, antimicrobial activity decreased as the length of the alkyl substitution increased from 7 to 13 carbons in compounds 3c–i . J. Heterocyclic Chem., (2012)  相似文献   

9.
Some novel [1,2,4]triazolo[3,4‐b][1,3,4]thiadiazole derivatives were synthesized from aryl acetic acids. All the synthesized derivatives were selected for the screening of antibacterial potential against Gram‐positive bacteria [Staphylococcus aureus (MTCC 3160) and Micrococcus luteus (MTCC 1538)] and Gram‐negative bacteria [Escherichia coli (MTCC 1652) and Pseudomonas aeruginosa (MTCC 424)] and antifungal potential against Aspergillus niger (MTCC 8652) and Candida albicans (MTCC 227), and free radical scavenging activity through 2,2‐diphenyl‐2‐picrylhydrazyl hydrate method. The compounds TH‐4 , TH‐13 , and TH‐19 were found to be more potent antimicrobial agents compared to standard drugs. The compounds TH‐3 , TH‐9 , and TH‐18 also showed significant antimicrobial activity. The compound TH‐13 showed antioxidant activity with IC50 value better than the standard compound. The structures of all the synthesized compounds were confirmed by Fourier transform infrared, 1H‐NMR, liquid chromatography–mass spectrometry, and CHN analyzer.  相似文献   

10.
A series of new 1‐substituted 3, 5‐diarylpyrazolines ( 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ) were synthesized in good yield by both conventional and microwave‐assisted synthesis from α, β‐ unsaturated ketones ( 6 , 7 , 8 , 9 ) in n‐butanol and benzothiazole hydrazines ( 2 , 3 , 4 , 5 ). All the new compounds were characterized by IR, NMR, and mass spectral data. The synthesized compounds ( 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 ) were evaluated for antibacterial and anthelmintic activities. The compounds showed potent anthelmintic activity against earthworm species (Eudrilus eugeniae) and moderate antibacterial activity against bacterial strains such as Gram positive bacteria, Enterococcus faecalis, Staphylococcus aureus, and Bacillus subtilis, and Gram negative bacteria, Escherichia coli and Proteus mirabilis.  相似文献   

11.
2‐Cyano‐N‐(antipyrin‐4‐yl)‐3‐(ethylthio)‐3‐(naphthalen‐1‐ylamino)acryl‐amide 4 was achieved via a one‐pot, three‐component reactions of cyanoacetamide derivative 2 , 2‐naphthyl isothiocyanate, and diethyl‐sulphate. The cyano acrylamide derivative 4 was hydrazinolysis to furnish 5‐aminopyrazole 5 ; many pyrazolo[1,5‐a ]pyrimidines 10a,b, 14, 15, 16, 18, and 20 have been synthesized via treatment of 5 with some electrophilic reagents. Also, ternary condensation of cyanoacetamide derivative 2 , terephthalaldehyde, and active methylene derivatives afforded bispyridone derivatives 21a,b . The structures of the new compounds were confirmed on the basis of elemental analysis and spectral data. Representative compounds of the synthesized products were tested and evaluated as antimicrobial. In general, the novel‐synthesized compounds showed a good antimicrobial activity against Gram‐positive bacteria, Gram‐negative bacteria, and antifungal activity against Azithromycin and Ketoconazole . The molecular modeling of the 21a and 21b as representative examples of the synthesized compounds has been drawn, and their molecular parameters were calculated.  相似文献   

12.
A novel series of (4‐fluorophenyl)(4‐(naphthalen‐2‐yl)‐6‐aryl‐2‐thioxo‐2,3‐dihydropyrimidin‐1(6H)‐yl)methanone derivatives were synthesized from reaction of 6‐(naphthalen‐2‐yl)‐4‐aryl‐3,4‐dihydropyrimidine‐2(1H)‐thiones with 4‐fluorobenzoylchloride in dichloromethane in the presence of triethylamine. The synthesized compounds were screened for antibacterial activity against Gram positive bacteria, namely, Staphylococcus aureus ATCC25923 and Listeria monocytogenes MTCC657, and Gram negative bacteria, namely, Escherichia coli ATCC25922 and Klebsiella pneumoniae ATCC700603, respectively. Some of the tested compounds showed significant antimicrobial activity.  相似文献   

13.
A new series of 2,4‐diaryl‐6‐methyl‐5‐nitropyrimidines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i ) were synthesized in good yields by Suzuki–Miyaura coupling of 2,4‐dichloro‐6‐methyl‐5‐nitropyrimidine ( 3 ) with various aryl boronic esters ( 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i ) in the presence of 1,1′‐ bis(diphenylphosphino)ferrocene dichloropalladium(II) (Pd(dppf)2Cl2). Further, antibacterial and antioxidant properties were screened for the title compounds 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i . Most of the compounds possessed significant activity against Gram‐positive bacteria Staphylococcus aureus and Bacillus subtilis and Gram‐negative bacteria Escherichia coli and Klebsiella pneumoniae. The antioxidant activity of the title compounds showed significant antioxidant activity when compared with vitamin C.  相似文献   

14.
Novel steroidal (6R)‐spiro‐1,3,4‐thiadiazoline derivatives have been synthesized by the cyclization of steroidal thiosemicarbazones. Thiosemicarbazones have been synthesized by the reaction of steroidal ketones with thiosemicarbazide. All the compounds have been characterized by IR, 1H NMR, mass and elemental analyses. The antibacterial activities of these compounds have been first tested in vitro by the disk diffusion assay against two Gram‐positive and two Gram‐negative bacteria, and then the minimum inhibitory concentration (MIC) values have been determined with the reference of standard drug amoxicillin. The results showed that steroidal thiadiazoline derivatives exhibited better antibacterial activity than the steroidal thiosemicarbazone derivatives. Chloro and acetoxy substituents on the 3β‐position of the steroidal thiadiazoline ring increased the anti‐bacterial activity. Among all the compounds, compounds 7 and 8 were found better inhibitors as compared to the respective drug amoxicillin.  相似文献   

15.
A novel series of 2‐(5‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐4,5‐dihydro‐1H‐pyrazol‐3‐yl)phenols derivative has been synthesized from (E)‐3‐(4‐(1H‐benzo[d][1,2,3]triazol‐1‐yl)phenyl)‐1‐(2‐hydroxyphenyl)prop‐2‐en‐1‐ones in ethanol and hydrazine hydrate under reflux condition. The synthesized compounds were screened for antibacterial activity against Gram‐positive bacteria viz Staphylococcus aureus and Bacillus subtilis and Gram‐negative bacteria viz Escherichia coli and Salmonella typhi, respectively. Some of the tested compounds showed significant antimicrobial activity. IR, 1H NMR, mass spectral data, and elemental analysis elucidated the structures of all the newly synthesized compounds.  相似文献   

16.
A series of novel 5‐arylazo‐thiazol‐2‐ylcarbamoyl‐thiophene derivatives was synthesized, and their chemical structures were secured by elemental and spectroscopic analyses. Their versatility for pharmaceutical purposes and textile dyeing as disperse dyes were reported. The synthesized dyes were applied to polyester fabrics by using high temperature dyeing method at 130°C. The dyed polyester fabrics displayed very good washing and perspiration fastness and moderate light fastness. Finally, the synthesized compounds showed biological activities against Bacillus subtilis, Staphylococcus aureus (Gram positive bacteria), Escherichia coli, and Pseudomonas aeruginosa (Gram‐negative bacteria), while no effect had been reported against fungi. The minimum inhibitory concentration of the most active compound was evaluated.  相似文献   

17.
1,3‐Dipolar cycloaddition reactions of N‐cyclohexyl maleimide ( 1 ) with azomethine N‐oxide ( 2 ) have afforded novel isoxazolidine ( 3 ) in excellent yield. Their structures have been characterized from their IR, 1H‐NMR, 13C‐NMR, 1H,1H‐COSY, MS(ESI), and elemental analysis techniques. In vitro antibacterial activity of the synthesized compounds were investigated against a representative panel of pathogenic strains specifically two Gram‐positive bacteria (Staphylococcus aureus and Streptococcus pyogenes ) and two Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli ) using agar‐well diffusion assay. Some of the compounds ( 3a , 3k , 3n , and 3o ) exhibited promising antibacterial activities. All the synthesized compounds have also been screened for their antioxidant activities and were found to be significantly active.  相似文献   

18.
In attempt to search for more potent antimicrobial agents, a series of 7‐nitro‐1‐(piperidin‐4‐yl)‐4,5‐dihydro‐[1,2,4]triazolo[4,3‐a]quinoline‐derived sulphonamides were synthesized. Their structures were established by elemental analyses, IR, and NMR (1H and 13C) spectral data. The antibacterial activity of the obtained compounds was investigated against different Gram‐negative (Escherichia coli and Pseudomonas aeruginosa) and Gram‐positive (Bacillus subtilis and Staphylococcus aureus) bacteria and antifungal activity against two fungal strains (Aspergillus niger and Aspergillus clavatus) using disk diffusion method at various concentrations (20, 40, 60, and 80 μg/mL). The study reveals that most of the title compounds showed significant antibacterial and fungal activity when compared with their respective standards streptomycin and griseofulvin.  相似文献   

19.
A series of novel 4‐aminoquinoline 1,3,5‐triazine derivatives were synthesized and characterized by FTIR, 1H‐NMR, 13C‐NMR, MS, and elemental analysis. The antibacterial activities of synthesized compounds were tested against three Gram‐positive bacteria, namely Bacillus subtilis (NCIM‐2063), Bacillus cereus (NCIM‐2156), and Staphylococcus aureus (NCIM‐2079), and four Gram‐negative bacteria, namely Proteus vulgaris (NCIM‐2027), Proteus mirabilis (NCIM‐2241), Escherichia coli (NCIM‐2065), and Pseudomonas aeruginosa (NCIM‐2036), using ciprofloxacin as reference standard drug. Results showed compound 9a and 9e as potent antibacterial agents against all bacterial strains except Bacillus cereus (NCIM‐2156). Copyright © 2014 HeteroCorporation  相似文献   

20.
A total of 17 new N‐substituted derivatives ( 2b , 2c , 2d , 2e , 2f , 2g , 2h , 2i , 2j , 2k and 3b , 3c , 3d , 3e , 3f , 3g , 3h ) of 5‐((2‐phenylthiazol‐4‐yl)methylene) thiazolidine‐2,4‐dione ( 2a ) and 5‐(2,6‐dichloro‐ benzylidene)thiazolidine‐2,4‐dione ( 3a ) were synthesized. The structural elucidation of the newly synthesized compounds was based on elemental analysis and spectroscopic data (MS, 1H NMR, 13C NMR), and their antimicrobial activities were assessed in vitro against several strains of Gram‐positive and Gram‐negative bacteria and one fungal strain (Candida albicans) as growth inhibition diameter. Some of them showed modest to good antibacterial activity against Gram‐negative Escherichia coli and Salmonella typhimurium and Gram‐positive Staphylococcus aureus, Bacillus cereus, and Enterococcus fecalis bacterial strains, whereas almost all the compounds were inactive against Listeria monocytogenes. All of the synthesized compounds showed moderate to very good activity against C. albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号