首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of the diazotization reaction of procaine in the presence of anionic micelles of sodium dodecyl sulfate (SDS) and cationic micelles of cetyltrimethyl ammonium bromide (CTAB), dodecyltrimethyl ammonium bromide (DDTAB) and tetradecyltrimethyl ammonium bromide (TDTAB) were carried out spectrophotometrically at λmax = 289 nm. The values of the pseudo first order rate constant were found to be linearly dependent upon the [NaNO2] in the concentration range of 1.0 × 10−3 mol dm−3 to 12.0 × 10−3 mol dm−3 in the presence of 2.0 × 10−2 mol dm−3 acetic acid. The concentration of procaine was kept constant at 6.50 × 10−5 mol dm−3. The addition of the cationic surfactants increased the reaction rate and gave plateau like curve. The addition of SDS micelles to the reactants initially increased the rate of reaction and gave maximum like curve. The maximum value of the rate constant was found to be 9.44 × 10−3 s−1 at 2.00 × 10−3 mol dm−3 SDS concentration. The azo coupling of diazonium ion with β-naphthol (at λmax = 488) nm was found to linearly dependent upon [ProcN2+] in the presence of both the cationic micelles (CTAB, DDTAB and TDTAB) and anionic micelles (SDS). Both the cationic and anionic micelles inhibited the rate of reactions. The kinetic results in the presence of micelles are explained using the Berezin pseudophase model. This model was also used to determine the kinetic parameters e.g. km, Ks from the observed results of the variation of rate constant at different [surfactants].  相似文献   

2.
The interaction of Procaine hydrochloride (PC) with cationic, anionic and non-ionic surfactants; cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and triton X-100, were investigated. The effect of ionic and non-ionic micelles on solubilization of Procaine in aqueous micellar solution of SDS, CTAB and triton X-100 were studied at pH 6.8 and 29°C using absorption spectrophotometry. By using pseudo-phase model, the partition coefficient between the bulk water and micelles, Kx, was calculated. The results showed that the micelles of CTAB enhanced the solubility of Procaine higher than SDS micelles (Kx = 96 and 166 for SDS and CTAB micelles, respectively) but triton X-100 did not enhanced the solubility of drug because of weak interaction with Procaine. From the resulting binding constant for Procaine-ionic surfactants interactions (Kb = 175 and 128 for SDS and CTAB surfactants, respectively), it was concluded that both electrostatic and hydrophobic interactions affect the interaction of surfactants with cationic procaine. Electrostatic interactions have a great role in the binding and consequently distribution of Procaine in micelle/water phases. These interactions for anionic surfactant (SDS) are higher than for cationic surfactant (CTAB). Gibbs free energy of binding and distribution of procaine between the bulk water and studied surfactant micelles were calculated.   相似文献   

3.
The alkaline hydrolysis of carsalam (2H-1,3-benzoxazine-2,4(3H)-dione), denoted as I, and its N-substituted derivatives i.e., N-methyl-1,3-benzoxazine-2,4-dione (II) and N-benzoyl-1,3-benzoxazine-2,4-dione (III) was studied spectrophotometrically at physiological temperature. The rate of hydrolysis was found to be independent on the substrate concentration. In case of I, the reaction was fractional order with respect to [OH(-)] while for II and III, reaction obeyed the first order kinetics. Effect of cationic surfactants with varying hydrophobic chains (cetyltrimethylammonium bromide, CTAB, tetradecyltrimethylammonium bromide, TTAB and dodecyltrimethylammonium bromide, DTAB) and with different head-group (cetyl pyridinium chloride, CPC) and anionic surfactant (sodium dodecyl sulfate, SDS) was also seen on the rate of alkaline hydrolysis of the carsalam and its derivatives. Cationic surfactants first catalyzed the rate of hydrolysis at lower concentrations followed by the inhibition at higher concentrations. The length of the alkyl chain had remarkable effect on the catalytic efficiency of the surfactants. Similarly N-substitution on substrate also increased the catalysis by micelles. The anionic surfactant SDS inhibited the rate of hydrolysis at all of the concentrations studied. The catalysis by cationic micelles followed by inhibition was treated in terms of the pseudophase ion-exchange model, while for the inhibition by SDS micelles the Menger-Portnoy model was used to fit the data. The effect of salts (NaCl, NaBr and (CH(3))(4)NBr) was also seen on the hydrolysis of II and it was found that all salts inhibited the rate of reaction. The inhibition follows the trend NaCl相似文献   

4.
The effect of cationic and anionic surfactants on the reaction of Basic Blue 3 (2,7-bis(diethylamino)phenazoxonium chloride, 1) with hydroxide ion has been studied. Cetyltrimethylammonium bromide (CTAB), cetyl and tetradecyltrimethylammonium chloride (CTAC and MTAC) enhance the rate of basic hydrolysis whereas sodium dodecyl sulfate (SDS) has an inhibitory effect. The extent of micellar catalysis is reduced by the addition of organic solvents. The results have been analyzed on the basis of the pseudophase ion-exchange model [1–3].  相似文献   

5.
The alkaline hydrolysis of curcumin was studied in three types of micelles composed of the cationic surfactants cetyl trimethylammonium bromide (CTAB) and dodecyl trimethylammonium bromide (DTAB) and the anionic surfactant sodium dodecyl sulfate (SDS). At pH 13, curcumin undergoes rapid degradation by alkaline hydrolysis in the SDS micellar solution. In contrast, alkaline hydrolysis of curcumin is greatly suppressed in the presence of either CTAB or DTAB micelles, with a yield of suppression close to 90%. The results from fluorescence spectroscopic studies reveal that while curcumin remains encapsulated in CTAB and DTAB micelles at pH 13, curcumin is dissociated from the SDS micelles to the aqueous phase at this pH. The absence of encapsulation and stabilization in the SDS micellar solution results in rapid hydrolysis of curcumin.  相似文献   

6.
Kinetics of the interaction of histidine and histidine methyl ester with ninhydrin under varying concentrations of reactants, anionic (sodium dodecyl sulphate, SDS), cationic (cetyltrimethylammonium bromide, CTAB) and non‐ionic (Triton X‐100, TX‐100) micelles have been carried out. Rate of the reaction was found to be independent of the initial concentration of histidine (and histidine methyl ester) but was dependent on [Ninhydrin]. The SDS micelles had no effect on the rate of the reaction. In the presence of the CTAB micelles a small enhancement in the rate was observed. The rate − [CTAB] profile showed that the increase in [CTAB] increased the rate up to a maximum value and a further increase had a decreasing effect on the rate. The rate was enhanced by TX‐100 also but, unlike CTAB micelles, TX‐100 possessed a curve without peak for the rate − [TX‐100] profile. The following rate equation was obeyed by the reaction in CTAB and TX‐100 micelles: Values of kw, km, and KS were evaluated and are reported herein. ©1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 103–111, 1999  相似文献   

7.
A series of functional surfactants of N-alkyl-N'-butyl viologens has been synthesized.The quenching of excited singlet and triplet states of zinc phthalocyanine was studied in DMSOand in mixed micelles containing the functional surfactant as one and cationic cetyl trimethylam-monium bromide(CTAB),anionic sodium dodecylsulfate(SDS)and neutral TX-100 surfactantas the other component.Fluorescence quenching and laser photolysis studies indicate that thefunctional surfactants are solubilized at different sites in micelles,the process depends on chainlength and exerts great influence on the quenching of zinc phthalocyanine excited states.  相似文献   

8.
The effect of micelles of different surfactants (cationic, anionic, and neutral) on the kinetics of the glucose oxidase-catalyzed reduction of ferrocenium cations RFc+ (R=H, Bun) byd-glucose was studied by spectrophotometry. In micellar media of Triton X-100 and sodium dodecyl sulfate (SDS), the Michaelis dependence of the reaction rate on the HFc+ concentration is observed, while this dependence has an extreme character in cationic micelles of cetyltrimethylammonium bromide (CTAB). The nature and concentration of surfactants of all types have a slight effect on the rate of reduction of HFc+. The level of enzymatic activity is approximately equal in the case of Triton X-100 and CTAB and is considerably lower in the SDS micelles. On going from HFc+ to BunFc+, the reaction rate is maximum in the cationic CTAB micelles, the anionic SDS micelles exhibit almost no activity, and the activity has an intermediate value in neutral micelles of Triton X-100. The conditions are presented under which the micellar medium controls the catalytic activity of glucose oxidase with respect to ferrocenium cations. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1795–1801, October, 1997.  相似文献   

9.
Effect of protein–micelle interaction on bovine serum albumin (BSA) oxidation by trichloromethyl peroxyl radical (CCl3O2·) in anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethyl ammonium bromide (CTAB) micellar media has been studied using nanosecond pulse radiolysis technique. Viscosity measurement and light scattering studies have suggested that SDS and CTAB micelles produce BSA–micelle aggregates of different sizes and polydispersity. Oxidation kinetics and transients have been affected both by anionic SDS and cationic CTAB micelles but in a different manner. Tryptophanyl-CCl3O2· adduct radical to tyrosyl radical transformation in BSA has been observed in anionic SDS micelles but not in cationic CTAB micelles. Similar studies have also been done with tryptophan and tyrosine amino acids, which undergo oxidation in BSA. The study suggests that Coulombic and hydrophobic interactions between micelles and protein affect the structure of the protein to shield its functional amino acids, like tryptophan and tyrosine, to neutral oxidizing radical.  相似文献   

10.
The reaction of hydroxide ion with stabilized pararosaniline hydrochloride carbocation was investigated in the presence of cationic micelles of cetyltrimethylammonium bromide (CTAB) and anionic micelles of sodium dodecyl sulfate (SDS). Pseudo-first-order kinetics were followed by the reaction system and rate constant depends on surfactant concentration. The reaction was strongly inhibited in the presence of SDS micelles whereas catalyzed in the presence of CTAB micelles. Micellar data were analyzed by applying positive cooperativity model of enzyme catalysis. The value of index of cooperativity (n) was greater than 1 for all reaction systems. Inhibitory and catalytic effect in the presence of micelles had been explained on the basis of hydrophobic and electrostatic interactions of various species present in the reaction systems. Presence of counterions in the reaction system inhibited the reaction rate.  相似文献   

11.
Micelles of different surfactants are well known to affect chemical equilibria and reactivities by selectively sequestering the reagent substrates through electrostatic and hydrophobic interactions. In this article, the effects of micelles of various surfactants on different parameters of the Ce(IV)‐catalyzed Belousov–Zhabotinsky (BZ) oscillatory reaction at 35°C in nonstirred closed conditions are studied by employing spectrophotometry and tensiometry. Surfactants used in this study are the cationics hexadecyltrimethylammonium bromide (CTAB) and pentamethylene‐1,5‐bis(N‐hexadecyl‐N,N‐dimethylammonium)bromide gemini (Gemini), anionic sodium dodecylbenzene sulfonate (SDBS), and nonionic Brij58, whereas the binary surfactant systems used are cationic–nonionic CTAB+Brij58 and anionic–nonionic SDBS+Brij58. The results revealed that the induction period shows a definite variation with increasing concentration of different surfactants above their critical micelle concentration (cmc). The amplitudes of oscillation and absorbance maxima and minima are enhanced in the presence of micelles of CTAB and Gemini surfactants, whereas micelles of SDBS and Brij58 have almost no effect on the nature of the oscillations. However, mixed micelles of CTAB+Brij58 and SDBS+Brij58 binary mixtures show a quite different effect on the overall behavior of the oscillations. The enhanced effect of CTAB and Gemini surfactants on the overall nature of oscillations has been attributed to the positive charge on the surface of their micelles and to some extent on the presence of nitrogen in their head group. The effect of mixed binary micelles may be attributed to their synergistic nature. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 659–668, 2010  相似文献   

12.
The rate of the perchloric acid hydrolysis of aqueous ethyl and butyl vinyl ethers at 25.0°C, in the presence of micellar aggregates [anionic, sodium dodecyl sulfate (SDS); cationic, cetyl trymethyl ammonium bromide (CTAB); and nonionic, polyoxyethylen? 23? dodecanol, (Brij 35)], has been studied. Negligible effects were observed in the cases of cationic and nonionic micelles. Anionic micelles produce an enhancement in the reaction velocity, and the rate constants go through maxima with increasing SDS concentration. These maxima disappear in the presence of excess sodium perchlorate. All these facts are interpreted quantitatively by means of the pseudo-phase ion-exchange model.  相似文献   

13.
Kinetics of the alkaline hydrolysis of isoproturon has been studied in the absence and presence of cetyltrimethylammonium bromide (CTAB) and sodium lauryl sulfate (NaLS) micelles. CTAB micelles were found to enhance the rate of reaction, while NaLS micelles inhibited the reaction rate. The reaction obeyed first‐order kinetics in [isoproturon] and was linearly dependent on [NaOH] at lower concentration. The rate of reaction became independent at higher [NaOH]. At lower [NaOH] the reaction proceeded via formation of hydroxide ion addition complex, while at higher [NaOH] the reaction occurred via deprotonation of ? NH? , leading to the formation of isocyanate. The values of kw, km, and Ks were determined by considering the pseudophase ion exchange model. The activation parameters have also been reported. The effect of added salts (NaCl and KNO3) on the reaction rate has also been studied. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 39–45, 2007  相似文献   

14.
阮科  赵振国  马季铭 《化学学报》2001,59(11):1883-1887
研究了阳离子表面活性剂混合胶团对2,4-二硝基氯苯(DNCB)碱性水解反应的催化作用。结果表明:(1)在十六烷基三甲基溴化铵(CTAB)和十六烷基溴化吡啶(CPB)混合溶液中DNCB水解一级速率常数k1与混合胶团中CTAB或CPB的摩尔分数有直线关系,表面活性剂形成理想的混合胶团。(2)辛基三甲基省化铵(OTAB)与CTAB,CPB的cmc值相差很大,在它们的混合胶团中OTAB含量极少,DNCB水解k1与CPB/OTAB混合胶团中CPB摩尔分数的关系与直线呈负偏差。(3)在CTAB(或CPB)与OTAB混合体系中OTAB起溴盐作用,使催化活性降低。用假相离子交换(PIE)模型对所得结果给出了定量的处理和解释。  相似文献   

15.
The hydrolysis of bis(p‐nitrophenyl)phosphate (BNPP) catalyzed by N‐methyldiethanolamine‐Ce(III) complex in the presence and absence of cetyltrimethylammonium bromide (CTAB) and Brij35 surfactants at pH 7.20 and 303 K has been studied. The experimental results indicate that N‐methyldiethanolamine‐Ce(III) complex remarkably accelerates the hydrolysis of BNPP. The observed first‐order rate constant of the hydrolysis of BNPP catalyzed by N‐methyldiethanolamine‐Ce(III) complex at pH 7.20 and 303 K is 1.22 × 10?2 s?1, which is 1.09 × 109 times of that of spontaneous hydrolysis of BNPP at pH 7. It is close to the activity of natural enzyme. A general quantitative treatment of the catalytic reaction involved a ternary complex as MmLlS has also been proposed in this paper. Applying this method to the catalytic hydrolysis of BNPP, we have obtained its thermodynamic and kinetic parameters. CTAB and Brij35 surfactant micelles obviously influence the rate constants of the catalytic hydrolysis of BNPP. Brij35 micelles promote the catalytic hydrolysis of BNPP, while CTAB micelles inhibit it. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 687–692, 2004  相似文献   

16.
In the present study, we investigate the self-association and mixed micellization of an anionic surfactant, sodium dodecyl sulfate (SDS), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB). The critical micelle concentration (CMC) of SDS, CTAB, and mixed (SDS + CTAB) surfactants was measured by electrical conductivity, dye solubilization, and surface tension measurements. The surface properties (viz., C20 (the surfactant concentration required to reduce the surface tension by 20 mN/m), ΠCMC (the surface pressure at the CMC), Γmax (maximum surface excess concentration at the air/water interface), and Amin (the minimum area per surfactant molecule at the air/water interface)) of SDS, CTAB, and (SDS + CTAB) micellar/mixed micellar systems were evaluated. The thermodynamic parameters of the micellar (SDS and CTAB), and mixed micellar (SDS + CTAB) systems were evaluated.

A schematic representation of micelles and mixed micelles.  相似文献   

17.
The kinetics of formation of N‐diketohydrindylidenehistidinatocopper(II) complex has been investigated in the presence of cationic cetyltrimethylammonium bromide (CTAB) surfactant in aqueous medium (pH = 5.0). Similarly in aqueous solution, the reaction followed irreversible first‐order kinetics with respect to [Ninhydrin]. Although the reaction mechanism remained unaltered by micelles, a typical kψ‐[CTAB] profile was observed, that is, with a progressive increase in [CTAB], the reaction rate increased, reached a maximum value, and then decreased. The results are treated quantitatively in terms of the kinetic pseudo‐phase model. Activation parameters were also evaluated and a large decrease in ΔS# shows the formation of a well‐structured activated complex. It was found that anionic sodium dodecyl sulphate (SDS) and non‐ionic Triton X‐100 (TX‐100) surfactants have no effect on the reaction. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 729–736, 1999  相似文献   

18.
Kinetics of the reaction between d‐glucose and Cr(VI) in the absence and presence of surfactant micelles have been studied by a spectrophotometric method in aqueous‐acidic solutions of perchloric acid. It was observed that the reaction has a nonautocatalytic followed by an autocatalytic pathway. The rate of the initial stage increases with increase in [glucose], [HClO4] and temperature. Due to precipitation, the effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) could not be studied whereas the oxidation is catalyzed by anionic micelles of sodium dodecyl sulfate (SDS) and nonionic micelles of Triton X‐100 (TX‐100). The results are discussed in terms of the pseudo‐phase kinetic model. Activation parameters are evaluated and a mechanism consistent with the results is proposed. A rate law for the reaction has also been derived. The redox reaction occurs through a Cr(VI)→Cr(IV) path.  相似文献   

19.
The rates of reaction between metal-dipeptide complex ([Zn(II)-Gly-Phe]+) and ninhydrin have been determined in aqueous and aqueous–cationic micelles of cetyltrimethylammonium bromide (CTAB) at 70°C and pH 5.0. The rate data indicate that the reaction follows the template reaction mechanism in both the media. The reaction followed a first-order and fractional-order kinetics with respect to [Zn(II)-Gly-Phe]+ and [ninhydrin], respectively, in the excess of ninhydrin over [Zn(II)-Gly-Phe]+. The rate constant is affected by [CTAB] changes and maximum rate enhancement is approximately three-fold. CTAB micelles decrease the activation enthalpy and make the activation entropy less negative. Quantitative kinetic analysis of rate constant (k ψ)–[CTAB] data was performed on the basis of pseudophase model of the micelles (proposed by Menger and Portnoy and developed by Bunton). The values of binding constants K S for [Zn(II)-Gly-Phe]+ and K N for ninhydrin with micelles are calculated with the help of observed kinetic data. The results obtained in micellar medium are treated quantitatively on the basis of pseudophase model.  相似文献   

20.
Micelle–water partition coefficient (Kx ) of naphtholazobenzimidazole dye (NAB) in aqueous solutions of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) has been determined spectrophotometerically. Changes in absorption patterns of dye caused by surfactants and solvents were quantified in terms of dye–surfactant ratio (n D/n S) and solvent water partition coefficients (P), respectively. Multiple residence sites have been suggested for dye molecules within micelles, based on shifts in azo-hydrazone tautomeric equilibrium. Micelle–water partition coefficients were used to evaluate the influence of dye on critical micelle concentration of CTAB and SDS. At same micelle concentration, M, the relative solubility of NAB was greater in cationic surfactant CTAB than in anionic surfactant SDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号