首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, solid‐phase extraction (SPE) in combination with dispersive liquid–liquid microextraction (DLLME) has been developed as a sample pretreatment method with high enrichment factors for the sensitive determination of amide herbicides in water samples. In SPE–DLLME, amide herbicides were adsorbed quantitatively from a large volume of aqueous samples (100 mL) onto a multiwalled carbon nanotube adsorbent (100 mg). After elution of the target compounds from the adsorbent with acetone, the DLLME technique was performed on the resulting solution. Finally, the analytes in the extraction solvent were determined by gas chromatography–mass spectrometry. Some important extraction parameters, such as flow rate of sample, breakthrough volume, sample pH, type and volume of the elution solvent, as well as salt addition, were studied and optimized in detail. Under optimum conditions, high enrichment factors ranging from 6593 to 7873 were achieved in less than 10 min. There was linearity over the range of 0.01–10 μg/L with relative standard deviations of 2.6–8.7%. The limits of detection ranged from 0.002 to 0.006 μg/L. The proposed method was used for the analysis of water samples, and satisfactory results were achieved.  相似文献   

2.
A novel and rapid sample pretreatment technique based on a combination of ultracentrifugation and solid‐phase extraction for the determination of α‐tocopherol in human erythrocyte membranes by high‐performance liquid chromatography with ultraviolet detection is presented in this work. Red blood cell samples were ultracentrifuged (288 000 × g, 3 min, 4°C) in the presence of d ‐mannitol, 4‐(2‐hydroxyethyl)‐1‐piperazineethanesulfonic acid and calcium chloride. The α‐tocopherol was then extracted from the erythrocyte membranes by solid‐phase extraction with n‐hexane in the presence of ascorbic acid. Tocopherol acetate was used as the internal standard. The extract was dissolved in methanol and separated on the monolithic column Chromolith Performance RP‐18e (100 × 4.6 mm) using 100% methanol as the mobile phase. The absorbance of α‐tocopherol was measured at a wavelength of 295 nm. The method was validated and showed sufficient accuracy and precision, ranging from 96.4 to 100.8% and from 4.5 to 6.3%, respectively. Moreover, the developed method was applied to the determination of erythrocyte α‐tocopherol in real samples from patients. The combined ultracentrifugation and solid‐phase extraction technique substantially decreased the time for the sample pretreatment step compared to liquid–liquid extraction and could be applicable for the quantitation of other analytes in erythrocyte membranes.  相似文献   

3.
In this study, silica modified with a 30‐membered macrocyclic polyamine was synthesized and first used as an adsorbent material in SPE. The SPE was further combined with ionic liquid (IL) dispersive liquid–liquid microextraction (DLLME). Five polycyclic aromatic hydrocarbons were employed as model analytes to evaluate the extraction procedure and were determined by HPLC combined with UV/Vis detection. Acetone was used as the elution solvent in SPE as well as the dispersive solvent in DLLME. The enrichment of analytes was achieved using the 1,3‐dibutylimidazolium bis[(trifluoromethyl)sulfonyl]imide IL/acetone/water system. Experimental conditions for the overall macrocycle‐SPE–IL‐DLLME method, such as the amount of adsorbent, sample solution volume, sample solution pH, type of elution solvent as well as addition of salt, were studied and optimized. The developed method could be successfully applied to the analysis of four real water samples. The macrocyclic polyamine offered higher extraction efficiency for analytes compared with commercially available C18 cartridge, and the developed method provided higher enrichment factors (2768–5409) for model analytes compared with the single DLLME. Good linearity with the correlation coefficients ranging from 0.9983 to 0.9999 and LODs as low as 0.002 μg/L were obtained in the proposed method.  相似文献   

4.
Dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME–SFO) was for the first time combined with field‐amplified sample injection (FASI) in CE to determine four β2‐agonists (cimbuterol, clenbuterol, mabuterol, and mapenterol) in bovine urine. Optimum BGE consisted of 20 mM borate buffer and 0.1 mM SDS. Using salting‐out extraction, β2‐agonists were extracted into ACN that was then used as the disperser solvent in DLLME–SFO. Optimum DLLME–SFO conditions were: 1.0 mL ACN, 50 μL 1‐undecanol (extraction solvent), total extraction time 1.5 min, no salt addition. Back extraction into an aqueous solution (pH 2.0) facilitated direct injection of β2‐agonists into CE. Compared to conventional CZE, DLLME–SFO–FASI–CE achieved sensitivity enhancement factors of 41–1046 resulting in LODs in the range of 1.80–37.0 μg L?1. Linear dynamic ranges of 0.15–10.0 mg L?1 for cimbuterol and 15–1000 μg L?1 for the other analytes were obtained with coefficients of determination (R2) ≥ 0.9901 and RSD% ≤5.5 (n = 5). Finally, the applicability of the proposed method was successfully confirmed by determination of the four β2‐agonists in spiked bovine urine samples and accuracy higher than 96.0% was obtained.  相似文献   

5.
For the first time, the high‐density solvent‐based solvent de‐emulsification dispersive liquid–liquid microextraction (HSD‐DLLME) was developed for the fast, simple, and efficient determination of chlorophenols in water samples followed by field‐enhanced sample injection with reverse migrating micelles in CE. The extraction of chlorophenols in the aqueous sample solution was performed in the presence of extraction solvent (chloroform) and dispersive solvent (acetone). A de‐emulsification solvent (ACN) was then injected into the aqueous solution to break up the emulsion, the obtained emulsion cleared into two phases quickly. The lower layer (chloroform) was collected and analyzed by field‐enhanced sample injection with reverse migrating micelles in CE. Several important parameters influencing the extraction efficiency of HSD‐DLLME such as the type and volume of extraction solvent, disperser solvent and de‐emulsification solvent, sample pH, extraction time as well as salting‐out effects were optimized. Under the optimized conditions, the proposed method provided a good linearity in the range of 0.02–4 μg/mL, low LODs (4 ng/mL), and good repeatability of the extractions (RSDs below 9.3%, n = 5). And enrichment factors for three phenols were 684, 797, and 233, respectively. This method was then utilized to analyze two real environmental samples from wastewater and tap water and obtained satisfactory results. The obtained results indicated that the developed method is an excellent alternative for the routine analysis in the environmental field.  相似文献   

6.
A novel dispersive liquid–liquid microextraction (DLLME) method followed by HPLC analysis, termed sequential DLLME, was developed for the preconcentration and determination of aryloxyphenoxy‐propionate herbicides (i.e. haloxyfop‐R‐methyl, cyhalofop‐butyl, fenoxaprop‐P‐ethyl, and fluazifop‐P‐butyl) in aqueous samples. The method is based on the combination of ultrasound‐assisted DLLME with in situ ionic liquid (IL) DLLME into one extraction procedure and achieved better performance than widely used DLLME procedures. Chlorobenzene was used as the extraction solvent during the first extraction. Hydrophilic IL 1‐octyl‐3‐methylimidazolium chloride was used as a dispersive solvent during the first extraction and as an extraction solvent during the second extraction after an in situ chloride exchange by bis[(trifluoromethane)sulfonyl]imide. Several experimental parameters affecting the extraction efficiency were studied and optimized with the design of experiments using MINITAB® 16 software. Under the optimized conditions, the extractions resulted in analyte recoveries of 78–91%. The correlation coefficients of the calibration curves ranged from 0.9994 to 0.9997 at concentrations of 10–300, 15–300, and 20–300 μg L?1. The relative SDs (n = 5) ranged from 2.9 to 5.4%. The LODs for the four herbicides were between 1.50 and 6.12 μg L?1.  相似文献   

7.
An environmentally friendly ionic liquids dispersive liquid–liquid microextraction (IL‐DLLME) method coupled with high‐performance liquid chromatography (HPLC) for the determination of antihypertensive drugs irbesartan and valsartan in human urine samples was developed. The HPLC separations were accomplished in less than 10 min using a reversed‐phase C18 column (250 × 4.60 mm i.d., 5 µm) with a mobile phase containing 0.3 % formic acid solution and methanol (v/v, 3:7; flow rate, 1.0 mL/min). UV absorption responses at 236 nm were linear over a wide concentration range from 50 µg/mL to the detection limits of 3.3 µg/L for valsartan and 1.5 µg/L for irbesartan. The effective parameters on IL‐DLLME, such as ionic liquid types and their amounts, disperser solvent types and their volume, pH of the sample and extraction time were studied and optimized. The developed IL‐DLLME‐HPLC was successfully applied for evaluation of the urine irbesartan and valsartan profile following oral capsules administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
SPE joined with dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME‐SFO) as a novel technique combined with GC with electron‐capture detection has been developed as a preconcentration technique for the determination of organochlorine pesticides (OCPs) in water samples. Aqueous samples were loaded onto multiwalled carbon nanotubes as sorbent. After the elution of the desired compounds from the sorbent by using acetone, the DLLME‐SFO technique was performed on the obtained solution. Variables affecting the performance of both steps such as sample solution flow rate, breakthrough volume, type and volume of the elution, type and volume of extraction solvent and salt addition were studied and optimized. The new method provided an ultra enrichment factor (8280–28221) for nine OCPs. The calibration curves were linear in the range of 0.5–1000 ng/L, and the LODs ranged from 0.1–0.39 ng/L. The RSD, for 0.01 μg/L of OCPs, was in the range of 1.39–13.50% (n = 7). The recoveries of method in water samples were 70–113%.  相似文献   

9.
Stir bar sorptive extraction (SBSE) combined with dispersive liquid–liquid microextraction (DLLME) has been developed as a new approach for the extraction of six triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, triticonazole and difenconazole) in aqueous samples prior to GC‐flame ionization detection (GC‐FID). A series of parameters that affect the performance of both steps were thoroughly investigated. Under optimized conditions, aqueous sample was stirred using a stir bar coated with octadecylsilane (ODS) and then target compounds on the sorbent (stir bar) were desorbed with methanol. The extract was mixed with 25 μL of 1,1,2,2‐tetrachloroethane and the mixture was rapidly injected into sodium chloride solution 30% w/v. After centrifugation, an aliquot of the settled organic phase was analyzed by GC‐FID. The methodology showed broad linear ranges for the six triazole pesticides studied, with correlation coefficients higher than 0.993, lower LODs and LOQs between 0.53–24.0 and 1.08–80.0 ng/mL, respectively, and suitable precision (RSD < 5.2%). Moreover, the developed methodology was applied for the determination of target analytes in several samples, including tap, river and well waters, wastewater (before and after purification), and grape and apple juices. Also, the presented SBSE‐DLLME procedure followed by GC‐MS determination was performed on purified wastewater. Penconazole, hexaconazole and diniconazole were detected in the purified wastewater that confirmed the obtained results by GC‐FID determination. In short, by coupling SBSE with DLLME, advantages of two methods are combined to enhance the selectivity and sensitivity of the method. This method showed higher enrichment factors (282–1792) when compared with conventional methods of sample preparation to screen pesticides in aqueous samples.  相似文献   

10.
Dispersive liquid–liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g Salen(N,N′‐bis(salicylidene)ethylenediamine) (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with Salen(N,N′‐bis(salicylidene)‐ethylenediamine), and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 122 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 2‐21 ng L?1 with a detection limit of 0.5 ng L?1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L?1 of cadmium was 2.9%. The relative recoveries of cadmium in tap, sea and rain water samples at a spiking level of 5 and 10 ng L?1 are 99, 94, 97 and 96%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on‐line liquid‐liquid extraction, single drop microextraction (SDME), on‐line solid phase extraction (SPE) and co‐precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

11.
A new, simple and cheap dispersive liquid–liquid microextraction (DLLME) procedure was optimized for the preconcentration of trace amounts of Ni(II) as a prior step to its determination by flame atomic absorption spectrometry (FAAS). It is based on the microextraction of nickel, where appropriate amounts of the extraction solvent (CHCl3), disperser solvent (ethanol) and chelating agent, name 5‐[(Z)‐isoxazol‐3‐yl‐diazenyl]‐2‐methyl‐quinolin‐8‐ol (MMD), were firstly synthesized/characterized and used. Various parameters that affect the extraction procedure such as pH, centrifugation rate and time, the chelating agent (MMD) concentration and sampling volume on the recovery of Ni(II) were investigated. The preconcentration of a 20 ml sample solution was thus enhanced by a factor of 80. The resulting calibration graph was linear in the range of 0.24–10 mg L−1 with a correlation coefficient of 0.9998. The limit of detection (3 s/b) obtained under optimal conditions was 1.00 μg L−1. The relative standard deviation for certified reference material determinations was 1.2%. The accuracy of the method was verified by the determination of Ni(II) in the certified reference material of wastewater (Waste water CWW TMD). The proposed procedure was successfully applied to the determination of Ni(II) in some fake jewelry and cosmetics samples.  相似文献   

12.
The application of dispersive liquid-liquid microextraction (DLLME) technique for the rapid analysis of aflatoxins B(1), B(2), G(1) and G(2) in maize, rice and wheat products has been evaluated. After extraction of aflatoxins from cereal matrices with a mixture of methanol/water 8:2 (v/v), the analytes were rapidly transferred from the extract to another small volume of organic solvent, chloroform, by DLLME. Aflatoxins were determined using high performance liquid chromatography with florescence detection and photochemical post-column derivatization. Parameters affecting both extraction and DLLME procedures, such as extraction solvent, type and volume of DLLME extractant, volume of water and salt effect, were systematically investigated and optimized to achieve the best extraction efficiency. Under the optimal experimental conditions, the whole analytical method provides enrichment factors around 2.5 times and detection limits (0.01-0.17 μg kg(-1)) below the maximum levels imposed by current regulation for aflatoxins in cereals and cereal products intended for direct human consumption. Recoveries (67-92%) and repeatability (RSD<10, n=3), tested in three different cereal matrices, meet the performance criteria required by EC Regulation No. 401/2006 for the determination of the levels of mycotoxins in foodstuffs. The proposed method was successfully applied to the analysis of retail cereal products with quantitative results comparable to the immunoaffinity chromatography (IAC). The main advantages of developed method are the simplicity of operation, the rapidity to achieve a very high sample throughput and low cost.  相似文献   

13.
The determination of α‐ketoacid concentration is demanded to evaluate the absorption and metabolic behavior of compound α‐ketoacid tablets taken by chronic kidney disease patients. To eliminate the interference of endogenous substance of urine and enrich the analytes, a three‐phase hollow‐fiber liquid‐phase microextraction combined with ion‐pair high‐performance liquid chromatography method was established for the determination of d ,l ‐α‐hydroxymethionine calcium, d ,l ‐α‐ketoisoleucine calcium, α‐ketovaline calcium, α‐ketoleucine calcium, and α‐ketophenylalanine calcium of compound α‐ketoacid tablets in human urine samples. The extraction parameters, such as organic solvent, pH of donor phase and acceptor phase, stirring rate, and extraction time were optimized. Under the optimal conditions, the obtained enrichment factors were up to 11‐, 110‐, 198‐, 202‐, and 50‐fold, respectively. The calibration curves for these analytes were linear over the range of 0.1–10 mg/L for α‐ketovaline calcium, d ,l ‐α‐ketoisoleucine calcium, and α‐ketoleucine calcium, 0.5–10 mg/L for d ,l ‐α‐hydroxymethionine calcium, and α‐ketophenylalanine calcium with r > 0.99. The relative standard deviations (n = 5) were less than 6.27% and the LODs were 100.7, 10.0, 5.8, 7.8, and 8.6 μg/L (based on S/N = 3), respectively. Good recoveries from spiked urine samples (92–118%) were obtained. The proposed method demonstrated excellent sample clean‐up and analytes enrichment to determine the five components in human urine.  相似文献   

14.
A high‐throughput miniaturized liquid–liquid extraction procedure followed by a simple ultra‐high performance liquid chromatography method coupled with fluorescence detection for bioanalytical analysis of all tocopherol isomers and retinol in human serum has been developed and validated. In the extraction procedure, a synthetic internal standard tocol was used, which does not occur in the human body. The separation of structurally related vitamins was achieved using a new generation of pentafluorophenyl propyl core–shell stationary phase with elution using methanol and an aqueous solution of ammonium acetate. The fluorescence of retinol and tocopherol isomers was detected at λex = 325, 295 nm and λem = 480, 325 nm, respectively. The rapid baseline separation of all analytes was accomplished within 4.0 min. The sensitivity of method was demonstrated with lower limits of quantification: retinol 0.01 μM, α‐tocopherol 0.38 μM, β‐tocopherol 0.18 μM, γ‐tocopherol 0.14 μM, and δ‐tocopherol 0.01 μM. Possible application of this method in clinical practice was confirmed by the analysis of human serum samples from healthy volunteers. Finally, the simultaneous determination of retinol and all tocopherol isomers in human serum can enable the clarification of their role in metabolism and in diseases such as cancer.  相似文献   

15.
Dispersive liquid–liquid microextraction (DLLME) coupled with liquid chromatography-tandem mass spectrometry detection was applied for determination of selected anti-inflammatory pharmaceuticals: ibuprofen, ketoprofen, naproxen and diclofenac. Development of DLLME procedure included optimisation of several important parameters such as kind and volume of extracting and dispersive solvents as well as sample pH. Under optimised conditions a two-step extraction with sonication was used. Chloroform was applied as the extracting and acetone as dispersing solvent. Calibration curves ranges were 1–500 μg L?1 for naproxen and ibuprofen and 0.25–500 μg L?1 for ketoprofen and diclofenac with correlation coefficients at least 0.997. Limits of quantitation were from 0.5 to 10 ng L?1. The developed analytical method was employed for determination of ibubrofen, ketoprofen, naproxen and diclofenac in river and tap water samples. The results showed that DLLME is a simple, rapid and sensitive analytical technique for the pre-concentration of trace amounts of pharmaceuticals in environmental water samples.  相似文献   

16.
A simple, sensitive, fast and efficient method based on dispersive liquid–liquid microextraction (DLLME) followed by ion mobility spectrometry (IMS) has been proposed for preconcentration and trace detection of carbamazepine (CBZ) in formulation samples. In this method, 1 mL of methanol (disperser solvent) containing 80 μL of chloroform (extraction solvent) was rapidly injected by a syringe into a sample. After 5 min centrifugation, the preconcentrated carbamazepine in the organic phase was determined by IMS. Development of DLLME procedure includes optimization of parameters influencing the extraction efficiencies such as kind and volume of extraction solvent, disperser solvent and salt addition, centrifugation time and pH of the sample solution. The proposed method presented good linearity in the range of 0.05–10 μg mL?1 and the detection limit was 0.025 μg mL?1. The repeatability of the method expressed as relative standard deviation was 6 % (n = 5). This method has been applied to the analysis of carbamazepine formulation samples with satisfactory relative recoveries ≤75 %.  相似文献   

17.
A dispersive liquid–liquid microextraction (DLLME) method combined with solvolysis reaction for extraction of the carbamate fungicide benomyl as carbendazim from water samples is described. The method is based on the extraction of benomyl from acidified sample solution and its conversion into carbendazim via solvolysis reaction with DMF as organic solvent. The proposed DLLME method was followed by HPLC with fluorimetric detection for determination of benomyl. The proposed method has good linearity (0.998) with wide linear dynamic range (0.01–25 mg/L) and low detection limit (0.0033 mg/L), making it suitable for benomyl determination in water samples.  相似文献   

18.
A simple and sensitive analytical methodology is developed for rapid screening and quantification of selected estrogenic endocrine disrupting chemicals and bisphenol A from intact milk using fabric phase sorptive extraction in combination with high‐performance liquid chromatography coupled to ultraviolet detection/tandem mass spectrometry. The new approach eliminates protein precipitation and defatting step from the sample preparation workflow. In addition, the error prone and time‐consuming solvent evaporation and sample reconstitution step used as the sample post‐treatment has been eliminated. Parameters with most significant impact on the extraction efficiency of fabric phase sorptive extraction including sorbent chemistry, sample volume, extraction time have been thoroughly studied and optimized. Separation of the selected estrogenic endocrine disrupting chemicals including α‐estradiol, hexestrol, estrone, 17α‐ethinyl estradiol, diethylstilboestrol, and bisphenol A were achieved using a Zorbax Extend‐C18 high‐performance liquid chromatography column (15 cm × 4.6 mm, 5 μm particle size). The limit of detection values obtained in fabric phase sorptive extraction with high‐performance liquid chromatography with ultraviolet detection ranged from 25.0 to 50.0 ng/mL. The method repeatability values were 3.6–13.9 (relative standard deviation, %) and intermediate precision values were 4.6–12.7 (relative standard deviation, %). The fabric phase sorptive extraction method was also coupled to liquid chromatography with tandem mass spectrometry for identifying each endocrine disrupting chemical at 10 ng/mL.  相似文献   

19.
An efficient and sensitive analytical method based on molecularly imprinted solid‐phase extraction (MISPE) and reverse‐phase ultrasound‐assisted dispersive liquid–liquid microextraction (USA‐DLLME) coupled with LC–MS/MS detection was developed and validated for the analysis of urinary 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanol (NNAL), a tobacco‐specific nitrosamine metabolite. The extraction performances of NNAL on three different solid‐phase extraction (SPE) sorbents including the hydrophilic‐lipophilic balanced sorbent HLB, the mixed mode cationic MCX sorbent and the molecularly imprinted polymers (MIP) sorbent were evaluated. Experimental results showed that the analyte was well retained with the highest extraction recovery and the optimum purification effect on MIP. Under the optimized conditions of MIP and USA‐DLLME, an enrichment factor of 23 was obtained. Good linearity relationship was obtained in the range of 5‐1200 pg/mL with a correlation coefficient of 0.9953. The limit of detection (LOD) was 0.35 pg/mL. The recoveries at three spiked levels ranged between 88.5% and 93.7%. Intra‐ and inter‐day relative standard deviations varied from 3.6% to 7.4% and from 5.4% to 9.7%, respectively. The developed method combing the advantages of MISPE and DLLME significantly improves the purification and enrichment of the analyte and can be used as an effective approach for the determination of ultra‐trace NNAL in complex biological matrices.  相似文献   

20.
A dispersive liquid–liquid microextraction procedure coupled with GC‐MS is described for preconcentration and determination of banned aromatic amines from textile samples. Experimental conditions affecting the microextraction procedure were optimized. A mixture of 30 μL chlorobenzene (extraction solvent) and 800 μL ACN (disperser solvent), 5 min extraction time, and 5 mL aqueous sample volume were chosen for the best extraction efficiency by the proposed procedure. Satisfactory linearity (with correlation coefficients >0.9962) and repeatability (<9.78%) were obtained for all 20 aromatic amines; detection limits attained were much lower than the standardized liquid–liquid method. The proposed method has advantages of being quicker and easier to operate, and lower consumption of organic solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号