共查询到20条相似文献,搜索用时 12 毫秒
1.
Shari Wu Wenkui Li Tapan Mujamdar Tom Smith Matthew Bryant Francis L. S. Tse 《Biomedical chromatography : BMC》2010,24(6):632-638
A high‐throughput LC–MS/MS bioanalytical method was developed and validated for the determination of hydrocortisone in mouse serum via supported liquid extraction (SLE) in a 96‐well plate format. Although sample extracts from SLE result in similar matrix effects compared with conventional liquid–liquid extraction (LLE), greater analyte extraction recovery and much higher analysis throughput for the quantitative analysis of hydrocortisone in mouse serum were obtained. The current LC‐MS/MS method was validated for a concentration range of 2.00–2000 ng/mL for hydrocortisone using a 0.100 mL volume of mouse serum. The intra‐ and inter‐day precision and accuracy of the quality control samples at low, medium and high concentration levels showed ≤12.9% CV and ?3.4–6.2% bias for the analyte in mouse serum. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
2.
Optimized determination of polybrominated diphenyl ethers by ultrasound‐assisted liquid–liquid extraction and high‐performance liquid chromatography 下载免费PDF全文
A method based on ultrasound‐assisted liquid–liquid extraction and high‐performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound‐assisted liquid–liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R2 > 0.9962 over a concentration range of 1–100 μg/L) and repeatability (relative standard deviation < 6.3%). Furthermore, the detection limit (S/N = 3) of the method were ranged from 0.02 to 0.13 μg/L and the quantification limit (S/N = 10) ranged from 0.07 to 0.35 μg/L. Finally, the proposed method was applied to spiked samples and satisfactory results were achieved. These results indicate that ultrasound‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples. 相似文献
3.
A. R. Maurí-Aucejo M. C. Pascual-Martí M. Llobat A. Herraiz A. Cerdn 《Microchemical Journal》2001,69(3):565
Determination of amphetamine in urine was performed by batch and flow injection methodologies. The suitable experimental conditions for fluorimetric measurements were established. The liquid–liquid extraction was carried out at pH 13 using diethyl ether as extracting reagent. The measurement conditions were 260 nm and 277 nm for excitation and emission wavelengths, respectively. The method requires standard addition calibration and Youden blank correction. The influence of the main metabolites of amphetamine and metamphetamine were studied. The accuracy and precision of the proposed method was tested and the method is adapted to the flow injection procedure with on-line extraction. 相似文献
4.
Yasuaki Okamoto Yoshitaka Nomura Hiderou Nakamura Kazuyuki Iwamaru Terufumi Fujiwara Takahiro Kumamaru 《Microchemical Journal》2000,65(3):66
A high preconcentration method by liquid–liquid extraction using liquid surfactant membranes was developed. The water-in-oil (w/o) emulsion containing dilute hydrochloric acid, 2-ethylhexyl hydrogen 2-ethylhexylphosphonate (PC-88A), liquid paraffin, and kerosene was used for the extraction. In a resulting volume of 1000 cm3 of an aqueous sample solution (pH 5.0) containing less than 1 mg of each metal ion, 2 cm3 of w/o emulsion droplets coated with sorbitan monooleate were dispersed. The analyte metal ions in the outer bulk aqueous phase were extracted into the organic phase to form a complex with PC-88A and successively back-extracted into the inner aqueous phase. The analytes in the resulting inner aqueous phase were determined subsequently by graphite furnace atomic absorption spectrometry applied as a detector. By this procedure, concentration factors of 570, 820, 750, 970, 860, and 880 were achieved for chromium(III), manganese(II), cobalt(II), nickel(II), copper(II), and cadmium(II), respectively, and also the respective detection limits (3σ) of 0.4, 20, 1.2, 18, 18, and 0.7 pg cm−3 were obtained. 相似文献
5.
Aili Liu Chao Han Xiujin Zhou Zhenou Zhu Fuzhen Huang Yan Shen 《Journal of separation science》2013,36(5):857-862
A new method based on pressurized liquid extraction followed by LC‐MS/MS analysis has been developed for the identification and quantification of three capsaicinoids (capsaicin, dihydrocapsaicin, and nordihydrocapsaicin) in extracts of Capsicum annuum. For the recovery of three capsaicinoids, the efficiency levels of ultrasonic‐assisted extraction, microwave‐assisted extraction, Soxhlet extraction, and pressurized liquid extraction were compared under different conditions. Pressurized liquid extraction resulted in higher yields. Pressurized liquid extractions were performed using methanol; temperature was set at 100°C and pressure at 1500 psi. LC analysis was performed on a Waters XBridge? C18 column (150 × 2.1 mm, id 3.5 μm) eluted by a mobile phase of 0.1% formic acid and ACN. Data acquisition was carried out in multiple reaction monitoring transitions mode, monitoring two‐reaction monitoring transitions to ensure an accurate identification of target compounds in the samples. The proposed method is rapid, simple, and could be utilized for the routine analysis of three capsaicinoids in C. annuum samples. 相似文献
6.
Li‐Hong Ye Xi‐De Liu Jun Cao Mingrui An Shu‐Ling Wang Jing‐Jing Xu Li‐Qing Peng 《Electrophoresis》2016,37(23-24):3118-3125
A simple, efficient, and green chitosan‐assisted liquid–solid extraction method was developed for the sample preparation of isoquinoline derivative alkaloids followed by microemulsion LC. The optimized mobile phase consisted of 0.8% w/v of ethyl acetate, 1.0% w/v of SDS, 8.0% w/v of n‐butanol, 0.1% v/v acetic acid, and 10% v/v ACN. Compared to pharmacopoeia method and organic solvent extraction, this new approach avoided the use of volatile organic solvents, replacing them with relatively small amounts of chitosan. Under the optimum conditions, good linearity (r2 > 0.9980) for all calibration curves and low detection limits between 0.05 and 0.10 μg/mL were achieved. The presented procedure was successfully applied to determine alkaloids in Rhizoma coptidis with satisfactory recoveries (81.3–106.4%). 相似文献
7.
《Biomedical chromatography : BMC》2018,32(9)
A bioanalytical method was developed and validated for the quantification of capreomycin (Cm) analogs, Cm IA and Cm IB, in human plasma. This implemented ion‐pairing solid phase extraction, followed by ion‐pairing high‐performance liquid chromatography, with tandem mass spectrometry detection. Chromatographic separation was achieved using a Discovery C18, 5 μm, 4.6 × 50 mm analytical column. An isocratic mobile phase consisting of water and acetonitrile with 0.1% formic acid and 4mm heptafluorobutyric acid (80:20; v/v) was used at a flow‐rate of 500 μL/min. An AB Sciex API 3000 mass spectrometer at unit resolution, in multiple reaction monitoring mode, was used for detection. Electrospray ionization was used for ion production. The method was successfully validated for the range 469–30,000 ng/mL for Cm IA and for Cm IB, with cefotaxime as the internal standard. The within‐ and between‐day precision determinations for Cm IA and IB, expressed as the percentage coefficient of variation, were < 20.0% at the lower limit of quantification (LLOQ) and < 8.2% at all other test concentrations. Recovery of both analogs was > 72.3% and reproducible at the low, medium and high end of the calibration range. No significant matrix effects were observed for the analyte. The assay performed well when applied to clinical samples generated from children in a clinical multidrug resistant tuberculosis research study in South Africa. 相似文献
8.
High‐pH or basic/alkaline mobile phases are not commonly used in LC–MS or LC–MS/MS bioanalysis because of the deeply rooted concern with column instability and reduced detection sensitivity for basic compounds in high‐pH mobile phases owing to charge neutralization. With the advancement of LC column technology and the wide recognition of the “wrong‐way‐round” phenomena, high‐pH mobile phases are more and more used in LC–MS or LC–MS/MS bioanalysis to improve chromatographic peak shape, retention, selectivity, resolution, and detection sensitivity, not only for basic compounds, but also for many other compounds. In this article, the benefits, practical considerations, application examples and cautions for using high‐pH mobile phases in LC–MS or LC–MS/MS bioanalysis are reviewed, with a focus on quantification. Furthermore, the future trends in this field are also envisaged. A total of 84 references are cited in this review. 相似文献
9.
Monitoring the oleuropein content of olive leaves and fruits using ultrasound‐ and salt‐assisted liquid–liquid extraction optimized by response surface methodology and high‐performance liquid chromatography 下载免费PDF全文
A novel and rapid ultrasound‐ and salt‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography has been optimized by response surface methodology for the determination of oleuropein from olive leaves. Box–Behnken design was used for optimizing the main parameters including ultrasound time (A), pH (B), salt concentration (C), and volume of miscible organic solvent (D). In this technique, a mixture of plant sample and extraction solvent was subjected to ultrasound waves. After ultrasound‐assisted extraction, phase separation was performed by the addition of salt to the liquid phase. The optimal conditions for the highest extraction yield of oleuropein were ultrasound time, 30 min; volume of organic solvent, 2.5 mL; salt concentration, 25% w/v; and sample pH, 4. Experimental data were fitted with a quadratic model. Analysis of variance results show that BC interaction, A2, B2, C2, and D2 are significant model terms. Unlike the conventional extraction methods for plant extracts, no evaporation and reconstitution operations were needed in the proposed technique. 相似文献
10.
《Biomedical chromatography : BMC》2018,32(8)
In the present study, a new extraction method based on a three–phase system, liquid–liquid–liquid extraction, followed by dispersive liquid–liquid microextraction has been developed and validated for the extraction and preconcentration of three commonly prescribed tricyclic antidepressant drugs – amitriptyline, imipramine, and clomipramine – in human plasma prior to their analysis by gas chromatography–flame ionization detection. The three phases were an aqueous phase (plasma), acetonitrile and n–hexane. The extraction mechanism was based on the different affinities of components of the biological sample (lipids, fatty acids, pharmaceuticals, inorganic ions, etc.) toward each of the phases. This provided high selectivity toward the analytes since most interferences were transferred into n–hexane. In this procedure, a homogeneous solution of the aqueous phase (plasma) and acetonitrile (water–soluble extraction solvent) was broken by adding sodium sulfate (as a phase separating agent) and the analytes were extracted into the fine droplets of the formed acetonitrile. Next, acetonitrile phase was mixed with 1,2–dibromoethane (as a preconcentration solvent at microliter level) and then the microextraction procedure mentioned above was performed for further enrichment of the analytes. Under the optimum extraction conditions, limits of detection and lower limits of quantification for the analytes were obtained in the ranges of 0.001–0.003 and 0.003–0.010 μg mL−1, respectively. The obtained extraction recoveries were in the range of 79–98%. Intra– and inter–day precisions were < 7.5%. The validated method was successfully applied for determination of the selected drugs in human plasma samples obtained from the patients who received them. 相似文献
11.
Mohsen Heydarzadeh Mohammad Hadi Givianrad Rouhollah Heydari Parviz Aberoomand Azar 《Journal of separation science》2019,42(20):3217-3224
In this study, for the first time, salt‐assisted liquid–liquid extraction was performed in a microchannel system. The proposed design is based on the increase of contact surface area between target analytes and extracting phase during the sample and extracting phase transfer in microchannel. In this method, first sample solution, extracting solvent, and salt were mixed by stirrer and simultaneously delivered into a microchannel using a syringe pump. In order to optimize the influential parameters on the extraction efficiency of the proposed method, zidovudine and tenofovir disoproxil fumarate were selected as model analytes. The main parameters such as extracting solvent and its volume, salt amount, pH of sample solution, and microchannel shape, length, and its inner diameter were investigated and optimized. Under the optimized conditions, the proposed method was linear in the range of 0.1–30 µg/mL and R2 coefficients were equal to 0.9922 and 0.9947 for zidovudine and tenofovir disoproxil fumarate, respectively. Extraction efficiency of the proposed method was compared with conventional salt‐assisted liquid–liquid extraction. The results show that the proposed design has higher extraction efficiency than conventional salt‐assisted liquid–liquid extraction. Finally, the proposed method was successfully applied for the determination of zidovudine and tenofovir disoproxil fumarate in plasma samples. 相似文献
12.
《Biomedical chromatography : BMC》2018,32(8)
A fast and sensitive method involving ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was introduced to detect citrinin in dried orange peel. A series of extraction, purification and chromatographic conditions was also systematically examined. With the proposed method, the obtained calibration graph was linear, with an R of 0.9996 within a concentration range of 0.5–10 ng/mL. The estimated limits of detection and quantification were 0.05 and 0.17 ng/mL, respectively. Under the selected conditions, the relative recoveries in different citrus products spiked with 1–10 ng/mL citrinin were 89.4–98.7% with RSDs of <2.5%. Compared with previously reported analytical methods, the newly developed UPLC–MS/MS method showed excellent sensitivity and good precision in detecting citrinin. The results indicated that it is a reliable and effective technique for the detection of trace citrinin in dried orange peel. 相似文献
13.
Xiao Ding Yuan Chen Srikumar Sahasranaman Yifan Shi Janine McKnight Brian Dean 《Biomedical chromatography : BMC》2016,30(12):1984-1991
A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the determination of GDC‐0425 concentrations in human plasma has been developed and validated. Supported liquid extraction was used to extract plasma samples (50 μL) and the resulting samples were analyzed using reverse‐phase chromatography and mass spectrometry coupled with a turbo‐ionspray interface. The mass analysis of GDC‐0425 was performed using multiple reaction monitoring transitions in positive ionization mode. The method was validated over the calibration curve range of 1.00–1000 ng/mL using linear regression and 1/x2 weighting. Within‐run relative standard deviation ranged from 0.8 to 5.1%, while between‐run RSD varied from 1.9 to 4.7% for QCs. The accuracy ranged from 90.0 to 101.0% of nominal for within‐run and from 94.0 to 100.0% of nominal for between‐run. Overall extraction recovery was 87.4% for GDC‐0425 and 87.9% for GDC‐0425‐d9. Stability of GDC‐0425 was established in human plasma for 374 days at ?20 and ?70 °C and established in reconstituted sample extracts for 88 h when stored at 2–8 °C. Stable‐labeled internal standard was used to minimize matrix effects. This assay was used to characterize the pharmacokinetics of GDC‐0425 in cancer patients. 相似文献
14.
《Biomedical chromatography : BMC》2017,31(11)
A simple LC–MS/MS method facilitated by salting‐out assisted liquid–liquid extraction (SALLE) was applied to simultaneously investigate the pharmacokinetics of trans‐ resveratrol (Res) and its major glucuronide and sulfate conjugates in rat plasma. Acetonitrile–methanol (80:20, v /v) and ammonium acetate (10 mol L−1) were used as extractant and salting‐out reagent to locate the target analytes in the supernatant after the aqueous and organic phase stratification, then the analytes were determined via gradient elution by LC–MS/MS in negative mode in a single run. The analytical method was validated with good selectivity, acceptable accuracy (>85%) and low variation of precision (<15%). SALLE showed better extraction efficiency of target glucuronide and sulfate conjugates (>80%). The method was successfully applied to determine Res and its four conjugated metabolites in rat after Res administration (intragastric, 50 mg kg−1; intravenous, 10 mg kg−1). The systemic exposures to Res conjugates were much higher than those to Res (AUC0–t , i.v., 7.43 μm h; p.o., 8.31 μm h); Res‐3‐O‐β ‐d ‐glucuronide was the major metabolite (AUC0–t , i.v., 66.1 μm h; p.o., 333.4 μm h). The bioavailability of Res was estimated to be ~22.4%. The reproducible SALLE method simplified the sample preparation, drastically improved the accuracy of the concomitant assay and gave full consideration of extraction recovery to each target analyte in bio‐samples. 相似文献
15.
A rapid, sensitive and selective bioanalytical method was developed for the simultaneous determination of fluoxetine and its primary metabolite norfluoxetine in human plasma. Sample preparation was based on supported liquid extraction (SLE) using methyl tert‐butyl ether to extract the analytes from human plasma. Chromatography was performed on a Synergi 4 μ polar‐RP column using a fast gradient. The ionization was optimized using ESI (+) and selectivity was achieved by tandem mass spectrometric analysis using MRM functions, m/z 310 → 44 for fluoxetine, m/z 296 → 134 for norfluoxetine and m/z 315 → 44 for fluoxetine‐d5 (internal standard). The method is linear over the range of 0.05–20 ng/mL (using a human plasma sample volume of 0.1 mL) with a coefficient determination of greater than 0.999. The method is accurate and precise with intra‐batch and inter‐batch accuracy (%bias) of <±15% and precision (%CV) of <15% for both analytes. A run time of 4 min means a high throughput of samples can be achieved. To our knowledge, this method appears to be the most sensitive one reported so far for the quantitation of fluoxetine and norfluoxetine and can be used for routine therapeutic drug monitoring or pharmacokinetic studies. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
《Biomedical chromatography : BMC》2018,32(8)
A highly sensitive, selective and rugged method has been described for the quantification of metronidazole (MTZ) in human plasma by liquid chromatography–tandem mass spectrometry using metronidazole‐d4 as the internal standard (IS). The analyte and the IS were extracted from 100 μL plasma by liquid–liquid extraction. The clear samples obtained were chromatographed on an ACE C18 (100 × 4.6 mm, 5 μm) column using acetonitrile and 10.0 mm ammonium formate in water, pH 4.00 (80:20, v/v) as the mobile phase. A triple quadrupole mass spectrometer system equipped with turbo ion spray source and operated in multiple reaction monitoring mode was used for the detection and quantification of MTZ. The calibration range was established from 0.01 to 10.0 μg/mL. The results of validation testing for precision and accuracy, selectivity, matrix effects, recovery and stability complied with current bioanalytical guidelines. A run time of 3.0 min permitted analysis of more than 300 samples in a day. The method was applied to a bioequivalence study with 250 mg MTZ tablet formulation in 24 healthy Indian males. 相似文献
17.
Abhaysingh Bhadoriya Priyanka A. Shah Pranav S. Shrivastav Kirtikumar D. Bharwad Puran Singhal 《Biomedical chromatography : BMC》2019,33(8)
A high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method has been developed for the determination of terbinafine in human plasma. The method employed liquid–liquid extraction of terbinafine and terbinafine‐d7 (used as internal standard) from 100 μL human plasma with ethyl acetate–n‐hexane (80:20, v/v) solvent mixture. Chromatography was performed on a BEH C18 (50 × 2.1 mm, 1.7 μm) column using acetonitrile–8.0 mm ammonium formate, pH 3.5 (85:15, v/v) under isocratic elution. For quantitative analysis, MS/MS ion transitions were monitored at m/z 292.2/141.1 and m/z 299.1/148.2 for terbinafine and terbinafine‐d7, respectively, using electrospray ionization in the positive mode. The method was validated according to regulatory guidance for selectivity, sensitivity, linearity, recovery, matrix effect, stability, dilution reliability and ruggedness with acceptable accuracy and precision. The method shows good linearity over the tested concentration range from 1.00 to 2000 ng/mL (r2 ≥ 0.9984). The intra‐batch and inter‐batch precision (CV) was 1.8–3.2 and 2.1–4.5%, respectively. The method was successfully applied to a bioequivalence study with 250 mg terbinafine in 32 healthy subjects. The major advantage of this method includes higher sensitivity, small plasma volume for processing and a short analysis time. 相似文献
18.
《Journal of separation science》2003,26(5):376-380
Volatile organochlorine compounds in the Tiber and Marta rivers have been analyzed by liquid–liquid extraction and headspace gas chromatography. Several different halogenated compounds were identified, in particular chloroform, bromoform, trichloroethane, trichloroethene, and tetrachloroethene. The concentrations of the halocarbons varied between 0.05 and 4.5 μg L–1 with a relative standard deviation ≤4.0%. The highest concentrations were observed for chloroform, bromoform, and tetrachloroethene in the Marta and Tiber rivers. The results obtained by use of the two analytical methods were similar. 相似文献
19.
Abhaysingh Bhadoriya Priyanka A. Shah Pranav S. Shrivastav Mallika Sanyal Manish S. Yadav 《Biomedical chromatography : BMC》2019,33(9)
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional. 相似文献
20.
Xianqin Wang Zheng Xiang Xiaojun Cai Haiya Wu Xuebao Wang Junwei Li Meiling Zhang 《Biomedical chromatography : BMC》2011,25(7):833-837
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of pethidine in human plasma was developed and validated over the concentration range of 4–2000 ng/mL. After addition of ketamine as internal standard, liquid–liquid extraction was used to produce a protein‐free extract. Chromatographic separation was achieved on a 100 × 2.1 mm, 5 µm particle, AllureTM PFP propyl column, with 45:40:15 (v/v/v) acetonitrile–methanol–water containing 0.2% formic acid as mobile phase. The MS data acquisition was accomplished by multiple reactions monitoring mode with positive electrospray ionization interface. The lower limit of quantification was 4 ng/mL; for inter‐day and intra‐day tests, the precision (RSD) for the entire validation was less than 7%, and the accuracy was within 95.9–106.5%. The method is sensitive and simple, and was successfully applied to analysis of samples of clinical intoxication. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献