首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chagas disease constitutes a major public health problem in Latin America. Human breast milk is a biological sample of great importance for the analysis of therapeutic drugs, as unwanted exposure through breast milk could result in pharmacological effects in the nursing infant. Thus, the goal of breast milk drug analysis is to inquire to which extent a neonate may be exposed to a drug during lactation. In this work, we developed an analytical technique to quantify benznidazole and nifurtimox (the two antichagasic drugs currently available for medical treatment) in human breast milk, with a simple sample pretreatment followed by an ionic‐liquid‐based dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography and UV detection. For this technique, the ionic liquid 1‐octyl‐3‐methylimidazolium hexafluorophosphate has been used as the “extraction solvent.” A central composite design was used to find the optimum values for the significant variables affecting the extraction process: volume of ionic liquid, volume of dispersant solvent, ionic strength, and pH. At the optimum working conditions, the average recoveries were 77.5 and 89.7%, the limits of detection were 0.06 and 0.09 μg/mL and the interday reproducibilities were 6.25 and 5.77% for benznidazole and nifurtimox, respectively. The proposed methodology can be considered sensitive, simple, robust, accurate, and green.  相似文献   

2.
In the present study, dispersive liquid–liquid microextraction followed by high performance liquid chromatography‐diode array detection has been developed as simple, rapid, accurate, and efficient sample preparation method for simultaneous determination of seven organic UV filters in urine samples. The influence of the main effects as well as their interactions was studied through a 2(6–2) fractional factorial design. The candidate parameters were: type and volume of dispersant and extraction solvents, sample pH, and salt concentration. Under final optimal conditions, the analytes were extracted from 5 mL of samples by addition of 0.5 mL of acetonitrile (dispersing solvent) containing 70 μL of carbon tetrachloride (extraction solvent), without modifying the pH of the solution and applying the (+1) level of salt concentration (10% w/v NaCl). The assay was linear (R2 > 0.997), relative recoveries ranged from 86.9 up to 97.3% and the LOQs between 3 and 45 ng mL?1 were obtained. The intra‐ and interday RSDs were lower than 5 and 8% at the middle point of the linear range, respectively. The proposed method was successfully applied to different volunteer urine samples and it was shown that the extraction efficiency was not affected by the type of urine samples.  相似文献   

3.
A method for the analysis of clotrimazole was developed with dispersive liquid–liquid microextraction for sample pre‐concentration and HPLC–MS/MS for analysis. A linear ion trap was used for the confirmation of clotrimazole identity in the samples. The developed method enables the analysis of clotrimazole in river water and sewage effluent from wastewater treatment plants with a LOQ of 0.7 ng/L. Environmental monitoring of clotrimazole was undertaken. Samples from river water and sewage effluents were analysed over a one‐year period. Clotrimazole was found in every tested sample with concentration range from 1 to 31 ng/L. The amount of clotrimazole in tested samples was highly dependent on sampling season. The highest results were obtained in summer and autumn.  相似文献   

4.
A new pretreatment method, SPE combined with dispersive liquid–liquid microextraction, was proposed for the determination of abamectin in citrus fruit samples for the first time. In this method, fruit samples were extracted by ultrasound‐assisted extraction followed by SPE. Then, the SPE was used as a disperser solvent in the next dispersive liquid–liquid microextraction step for further purification and enrichment of abamectin. The effects of various parameters on the extraction efficiency of the proposed method were investigated and optimized. Good linearity of abamectin was obtained from 0.005 to 10.0 mg/kg for B1a and from 0.05 to 10.0 mg/kg for B1b with correlation coefficient (r2) of 0.998 for B1a and 0.991 for B1b, respectively. The LODs were 0.001 and 0.008 mg/kg (S/N = 3) for B1a and B1b, respectively. The relative recoveries at three spiked levels were ranged from 87 to 96% with the RSD less than 11% (n = 3). The method has been successfully applied to the determination of abamectin in citrus fruit samples.  相似文献   

5.
A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid–liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001–10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved.  相似文献   

6.
Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1‐Octyl‐3‐methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10–1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal‐to‐noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220‐fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser.  相似文献   

7.
A dispersive liquid–liquid microextraction procedure coupled with GC‐MS is described for preconcentration and determination of banned aromatic amines from textile samples. Experimental conditions affecting the microextraction procedure were optimized. A mixture of 30 μL chlorobenzene (extraction solvent) and 800 μL ACN (disperser solvent), 5 min extraction time, and 5 mL aqueous sample volume were chosen for the best extraction efficiency by the proposed procedure. Satisfactory linearity (with correlation coefficients >0.9962) and repeatability (<9.78%) were obtained for all 20 aromatic amines; detection limits attained were much lower than the standardized liquid–liquid method. The proposed method has advantages of being quicker and easier to operate, and lower consumption of organic solvent.  相似文献   

8.
A novel procedure of sample preparation combined with high‐performance liquid chromatography with diode array detection is introduced for the analysis of highly chlorinated phenols (trichlorophenols, tetrachlorophenols, and pentachlorophenol) in wine. The main features of the proposed method are (i) low‐toxicity diethyl carbonate as extraction solvent to selectively extract the analytes without matrix effect, (ii) the combination of salting‐out assisted liquid–liquid extraction and dispersive liquid–liquid microextraction to achieve an enrichment factor of 334–361, and (iii) the extract is analyzed by high‐performance liquid chromatography to avoid derivatization. Under the optimum conditions, correlation coefficients (r) were >0.997 for calibration curves in the range 1–80 ng/mL, detection limits and quantification limits ranged from 0.19 to 0.67 and 0.63 to 2.23 ng/mL, respectively, and relative standard deviation was <8%. The method was applied for the determination of chlorophenols in real wines, with recovery rates in the range 82–104%.  相似文献   

9.
An ionic liquid (IL) based dispersive liquid–liquid microextraction combined with HPLC hydride generation atomic fluorescence spectrometry method for the preconcentration and determination of mercury species in environmental water samples is described. Four mercury species (MeHg+, EtHg+, PhHg+, and Hg2+) were complexed with dithionate and the neutral chelates were extracted into IL drops using dispersive liquid–liquid microextraction. Variables affecting the formation and extraction of mercury dithizonates were optimized. The optimum conditions found were as follows: IL‐type and amount, 0.05 g of 1‐octyl‐3‐methylimidazolium hexafluorophosphate; dispersive solvents type and amount, 500 μL of acetone; pH, 6; extraction time, 2 min; centrifugation time, 12 min; and no sodium chloride addition. Under the optimized conditions, the detection limits of the analytes were 0.031 μg/L for Hg2+, 0.016 μg/L for MeHg+, 0.024 μg/L for EtHg+, and 0.092 μg/L for PhHg+, respectively. The repeatability of the method, expressed as RSD, was between 1.4 and 5.2% (n = 10), and the average recoveries for spiked test were 96.9% for Hg2+, 90.9% for MeHg+, 90.5% for EtHg+, 92.3% for PhHg+, respectively. The developed method was successfully applied for the speciation of mercury in environmental water samples.  相似文献   

10.
In situ ionic‐liquid‐dispersive liquid–liquid microextraction was introduced for extracting Sudan dyes from different liquid samples followed by detection using ultrafast liquid chromatography. The extraction and metathesis reaction can be performed simultaneously, the extraction time was shortened notably and higher enrichment factors can be obtained compared with traditional dispersive liquid–liquid microextraction. When the extraction was coupled with ultrafast liquid chromatography, a green, convenient, cheap, and efficient method for the determination of Sudan dyes was developed. The effects of various experimental factors, including type of extraction solvent, amount of 1‐hexyl‐3‐methylimidazolium chloride, ratio of ammonium hexafluorophosphate to 1‐hexyl‐3‐methylimidazolium chloride, pH value, salt concentration in sample solution, extraction time and centrifugation time were investigated and optimized for the extraction of four kinds of Sudan dyes. The limits of detection for Sudan I, II, III, and IV were 0.324, 0.299, 0.390, and 0.655 ng/mL, respectively. Recoveries obtained by analyzing the seven spiked samples were between 65.95 and 112.82%. The consumption of organic solvent (120 μL acetonitrile per sample) was very low, so it could be considered as a green analytical method.  相似文献   

11.
A method was developed to determine 2‐mercaptobenzimidazole in water and urine samples using dispersive liquid–liquid microextraction technique coupled with ultraviolet–visible spectrophotometry. It was essential to peruse the effect of all parameters that can likely influence the performance of extraction. The influence of parameters, such as dispersive and extraction solvent volume and sample volume, on dispersive liquid–liquid microextraction was studied. The optimization was carried out by the central composite design method. The central composite design optimization method resulted in 1.10 mL dispersive solvent, 138.46 μL extraction solvent, and 4.46 mL sample volume. Under the optimal terms, the calibration curve was linear over the range of 0.003–0.18 and 0.007–0.18 μg/mL in water and urine samples, respectively. The limit of detection and quantification of the proposed approach for 2‐mercaptobenzimidazole were 0.013 and 0.044 μg/mL in water samples and 0.016 and 0.052 μg/mL in urine samples, respectively. The method was successfully applied to determination of 2‐mercaptobenzimidazole in urine and water samples.  相似文献   

12.
A dispersive liquid–liquid microextraction (DLLME) method combined with solvolysis reaction for extraction of the carbamate fungicide benomyl as carbendazim from water samples is described. The method is based on the extraction of benomyl from acidified sample solution and its conversion into carbendazim via solvolysis reaction with DMF as organic solvent. The proposed DLLME method was followed by HPLC with fluorimetric detection for determination of benomyl. The proposed method has good linearity (0.998) with wide linear dynamic range (0.01–25 mg/L) and low detection limit (0.0033 mg/L), making it suitable for benomyl determination in water samples.  相似文献   

13.
A rapid, selective and sensitive sample preparation method based on solid‐phase extraction combined with the dispersive liquid–liquid microextration was developed for the determination of pyrethroid pesticides in wheat and maize samples. Initially, the samples were extracted with acetonitrile and water solution followed phase separation with the salt addition. The following sample preparation involves a solid‐phase extraction and dispersive liquid–liquid microextraction step, which effectively provide cleanup and enrichment effects. The main experimental factors affecting the performance both of solid‐phase extraction and dispersive liquid–liquid microextration were investigated. The validation results indicated the suitability of the proposed method for routine analyze of pyrethroid pesticides in wheat and maize samples. The fortified recoveries at three levels ranged between 76.4 and 109.8% with relative standard deviations of less than 10.7%. The limit of quantification of the proposed method was below 0.0125 mg/kg for the pyrethoroid pesticides. The proposed method was successfully used for the rapid determination of pyrethroid residues in real wheat and maize samples from crop field in Beijing, China.  相似文献   

14.
A novel method for the simultaneous determination of sulfonamides (SAs) in water samples has been developed by using dispersive liquid–liquid microextraction (DLLME) coupled with CE. Orthogonal and Box–Behnken designs were employed together to assist the optimization of DLLME parameters, including volumes of extraction and disperser solvents, ionic strength, extraction time, and centrifugation time and speed as variable factors. Under the optimum extraction and detection conditions, successful separation of the five SAs was achieved within 5 min, and excellent analytical performances were attained, such as good linear relationships (R>0.980) between peak area and concentration for each SA from 0.5 to 50 μg/mL, low limits of detection for the five SAs between 0.020 and 0.570 μg/mL and the intra‐day precisions of migration time below 0.80%. The method recoveries obtained at fortified 10 μg/mL for three water samples ranged from 53.6 to 94.0% with precisions of 1.23–5.60%. The proposed method proved highly sensitive and selective, rapid, convenient and cost‐effective, showing great potential for the simultaneous determination of SAs in water samples.  相似文献   

15.
In this work, a new method based on dispersive liquid–liquid microextraction (DLLME) preconcentration using tetrachloromethane (CCl4) as extraction solvent was proposed for the spectrophotometric determination of cadmium and copper in water and food samples. The influence factors relevant to DLLME, such as type and volume of extractant and disperser solvent, concentration of chelating reagents, pH, salt effect, were optimized. Under the optimal conditions, the limits of detection for cadmium and copper were 0.01 ng/L and 0.5 μg/L, with enhancement factors (EFs) of 3458 and 10, respectively. The tremendous contrast of EFs could come from the different maximum absorption wavelength caused by the different extraction acidity compared with some conventional works and the enhancement effect of acetone used as dilution solvent during the spectrophotometric determination. The proposed method was applied to the determination of water and food samples with satisfactory analytical results. The proposed method was simple, rapid, cost-efficient and sensitive, especially for the detection of cadmium.  相似文献   

16.
Stir bar sorptive extraction (SBSE) combined with dispersive liquid–liquid microextraction (DLLME) has been developed as a new approach for the extraction of six triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole, triticonazole and difenconazole) in aqueous samples prior to GC‐flame ionization detection (GC‐FID). A series of parameters that affect the performance of both steps were thoroughly investigated. Under optimized conditions, aqueous sample was stirred using a stir bar coated with octadecylsilane (ODS) and then target compounds on the sorbent (stir bar) were desorbed with methanol. The extract was mixed with 25 μL of 1,1,2,2‐tetrachloroethane and the mixture was rapidly injected into sodium chloride solution 30% w/v. After centrifugation, an aliquot of the settled organic phase was analyzed by GC‐FID. The methodology showed broad linear ranges for the six triazole pesticides studied, with correlation coefficients higher than 0.993, lower LODs and LOQs between 0.53–24.0 and 1.08–80.0 ng/mL, respectively, and suitable precision (RSD < 5.2%). Moreover, the developed methodology was applied for the determination of target analytes in several samples, including tap, river and well waters, wastewater (before and after purification), and grape and apple juices. Also, the presented SBSE‐DLLME procedure followed by GC‐MS determination was performed on purified wastewater. Penconazole, hexaconazole and diniconazole were detected in the purified wastewater that confirmed the obtained results by GC‐FID determination. In short, by coupling SBSE with DLLME, advantages of two methods are combined to enhance the selectivity and sensitivity of the method. This method showed higher enrichment factors (282–1792) when compared with conventional methods of sample preparation to screen pesticides in aqueous samples.  相似文献   

17.
A fully automated method for the determination of six phthalates in environmental water samples is described. It is based in the novel sample preparation concept of in‐syringe dispersive liquid–liquid microextraction, coupled as a front end to GC–MS, enabling the integration of the extraction steps and sample injection in an instrumental setup that is easy to operate. Dispersion was achieved by aspiration of the organic (extractant and disperser) and the aqueous phase into the syringe very rapidly. The denser‐than‐water organic droplets released in the extraction step, were accumulated at the head of the syringe, where the sedimented fraction was transferred to a rotary micro‐volume injection valve where finally was introduced by an air stream into the injector of the GC through a stainless‐steel tubing used as interface. Factors affecting the microextraction efficiency were optimized using multivariate optimization. Figures of merit of the proposed method were evaluated under optimal conditions, achieving a detection limit in the range of 0.03–0.10 μg/L, while the RSD% value was below 5% (n = 5). A good linearity (0.9956 ≥ r2 ≥ 0.9844) and a broad linear working range (0.5–120 μg/L) were obtained. The method exhibited enrichment factors and recoveries, ranging from 14.11–16.39 and 88–102%, respectively.  相似文献   

18.
An extraction method based on dispersive nanomaterial ultrasound‐assisted microextraction was used for the preconcentration of carbofuran and propoxur insecticides in water samples prior to high‐performance liquid chromatography with UV detection. ZnS:Ni nanoparticles were synthesized based on the reaction of the mixture of zinc acetate and nickel acetate with thioacetamide in aqueous media and then loaded on activated carbon (ZnS:Ni‐AC). Different methods were used for recognizing the properties of ZnS:Ni‐AC and then this nanomaterial was used for extraction of carbamate insecticide as new adsorbent. The influence of variables on the extraction method (such as amount of adsorbent (mg: NiZnS‐AC), pH and ionic strength of sample solution, vortex and ultrasonic time (min), ultrasound temperature and desorption volume (mL) was investigated by a screening 27–4 Plackett–Burman design. Then the significant variables were optimized by using a central composite design combined with a desirability function. At optimum conditions, this method had linear response >0.0060–10 μg/mL with detection limit 0.0015 μg/mL and relative standard deviations <5.0% (n = 3).  相似文献   

19.
An ionic liquid‐based dispersive liquid–liquid microextraction followed by RP‐HPLC determination of the most commonly prescribed protease inhibitor, saquinavir, in rat plasma was developed and validated. The effects of different ionic liquids, dispersive solvents, extractant/disperser ratio and salt concentration on sample recovery and enrichment were studied. Among the ionic liquids investigated, 1‐butyl‐3‐methylimidazolium hexafluorophosphate was found to be most effective for extraction of saquinavir from rat serum. The recovery was found to be 95% at an extractant/disperser ratio of 0.43 using 1‐butyl‐3‐methylimidazolium hexafluorophosphate and methanol as extraction and dispersive solvents. The recovery was further enhanced to 99.5% by addition of 5.0% NaCl. A threefold enhancement in detection and quantification limits was achieved, at 0.01 and 0.03 µg/mL, compared with the conventional protein precipitation method. A linear relationship was observed in the range of 0.035–10.0 µg/mL with a correlation coefficient (r2) of 0.9996. The method was validated and applied to study pharmacokinetics of saquinavir in rat serum. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A simple, rapid, and efficient method of ultrasonic nebulization extraction assisted dispersive liquid–liquid microextraction was developed for the simultaneous determination of six parabens in cosmetic products. The analysis was carried out by gas chromatography. Water was used as the dispersive solvent instead of traditional organic disperser. The experimental factors affecting the extraction yield, such as the extraction solvent and volume, extraction time, dispersive solvent and volume, ionic strength, and centrifuging condition were studied and optimized in detail. The limit of detections for the target analytes were in the range of 2.0–9.5 μg/g. Good linear ranges were obtained with the coefficients ranging from 0.9934 to 0.9969. The proposed method was successfully applied to the analysis of six parabens in 16 cosmetic products. The recoveries of the target analytes in real samples ranged from 81.9 to 108.7%, and the relative standard deviations were <5.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号