共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we study multipartite Ramsey numbers for odd cycles. We formulate the following conjecture: Let n≥5 be an arbitrary positive odd integer; then, in any two‐coloring of the edges of the complete 5‐partite graph K((n?1)/2, (n?1)/2, (n?1)/2, (n?1)/2, 1) there is a monochromatic Cn, a cycle of length n. This roughly says that the Ramsey number for Cn (i.e. 2n?1 ) will not change (somewhat surprisingly) if four large “holes” are allowed. Note that this would be best possible as the statement is not true if we delete from K2n?1 the edges within a set of size (n+ 1)/2. We prove an approximate version of the above conjecture. © 2009 Wiley Periodicals, Inc. J Graph Theory 61:12‐21, 2009 相似文献
2.
The Ramsey number R(G1,G2,…,Gk) is the least integer p so that for any k-edge coloring of the complete graph Kp, there is a monochromatic copy of Gi of color i. In this paper, we derive upper bounds of R(G1,G2,…,Gk) for certain graphs Gi. In particular, these bounds show that R(9,9)6588 and R(10,10)23556 improving the previous best bounds of 6625 and 23854. 相似文献
3.
András Gyárfás Miklós Ruszinkó Gábor N. Sárközy Endre Szemerédi 《Journal of Graph Theory》2007,55(2):164-174
In this article, we study the tripartite Ramsey numbers of paths. We show that in any two‐coloring of the edges of the complete tripartite graph K(n, n, n) there is a monochromatic path of length (1 ? o(1))2n. Since R(P2n+1,P2n+1)=3n, this means that the length of the longest monochromatic path is about the same when two‐colorings of K3n and K(n, n, n) are considered. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 164–174, 2007 相似文献
4.
The well‐known Ramsey number is the smallest integer n such that every ‐free graph of order n contains an independent set of size u. In other words, it contains a subset of u vertices with no K2. Erd?s and Rogers introduced a more general problem replacing K2 by for . Extending the problem of determining Ramsey numbers they defined the numbers where the minimum is taken over all ‐free graphs G of order n. In this note, we study an analogous function for 3‐uniform hypergraphs. In particular, we show that there are constants c1 and c2 depending only on s such that 相似文献
5.
We show that if G is a Ramsey size‐linear graph and x,y ∈ V (G) then if we add a sufficiently long path between x and y we obtain a new Ramsey size‐linear graph. As a consequence we show that if G is any graph such that every cycle in G contains at least four consecutive vertices of degree 2 then G is Ramsey size‐linear. © 2002 John Wiley & Sons, Inc. J Graph Theory 39: 1–5, 2002 相似文献
6.
For given graphs G1,G2,…,Gk, k≥2, the multicolor Ramsey number, denoted by R(G1,G2,…,Gk), is the smallest integer n such that if we arbitrarily color the edges of a complete graph on n vertices with k colors, there is always a monochromatic copy of Gi colored with i, for some 1≤i≤k. Let Pk (resp. Ck) be the path (resp. cycle) on k vertices. In the paper we consider the value for numbers of type R(Pi,Pk,Cm) for odd m, k≥m≥3 and when i is odd, and when i is even. In addition, we provide the exact values for Ramsey numbers R(P3,Pk,C4) for all integers k≥3. 相似文献
7.
Let R(G) denote the minimum integer N such that for every bicoloring of the edges of KN, at least one of the monochromatic subgraphs contains G as a subgraph. We show that for every positive integer d and each γ,0 < γ < 1, there exists k = k(d,γ) such that for every bipartite graph G = (W,U;E) with the maximum degree of vertices in W at most d and , . This answers a question of Trotter. We give also a weaker bound on the Ramsey numbers of graphs whose set of vertices of degree at least d + 1 is independent. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 198–204, 2001 相似文献
8.
9.
The study of the CO‐irredundant Ramsey numbers t(n1, ···, nk) is initiated. It is shown that several values and bounds for these numbers may be obtained from the well‐studied generalized graph Ramsey numbers and the values of t(4, 5), t(4, 6) and t(3, 3, m) are calculated. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 258–268, 2000 相似文献
10.
Michael Tait 《Discrete Mathematics》2018,341(1):104-108
Let denote that any -coloring of contains a monochromatic . The degree Ramsey number of a graph , denoted by , is . We consider degree Ramsey numbers where is a fixed even cycle. Kinnersley, Milans, and West showed that , and Kang and Perarnau showed that . Our main result is that and . Additionally, we substantially improve the lower bound for for general . 相似文献
11.
It has been conjectured that r(Cm, Kn) = (m − 1)(n − 1) + 1 for all m ≥ n ≥ 4. This has been proved recently for n = 4 and n = 5. In this paper, we prove that r(C5, K6) = 21. This raises the possibility that r(Cm, K6) = 5m − 4 for all m ≥ 5. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 99–108, 2000 相似文献
12.
本文利用Lovasz局部引理的Spencer形式和对称形式给出r-一致超图Ramsey函数的渐近下界.证明了:对于任意取定的正整数f0,使得当n→∞时,有R~((r))(m~l,n~(k-l))≥(c-o(1))(n~(r-1)/logn)~■.特别地,R~((r))_k(n)≥(1-o(1))n/e k~■(n→∞).对于任意取定的正整数s≥r+1和常数δ>0,α≥0,如果F表示阶为s的r-一致超图,■表示阶为t的r-一致超图,且■的边数满足m(■)≥(δ-o(1))t~r/(logt)α(t→∞),则存在c=c(s,δ,α)>0,使得R~((r))(F,■)≥(c-o(1))(t~(r-1)/(logt)~l+(r-l)α)~(m(F)-l/s-r). 相似文献
13.
Graph G is a (k, p)‐graph if G does not contain a complete graph on k vertices Kk, nor an independent set of order p. Given a (k, p)‐graph G and a (k, q)‐graph H, such that G and H contain an induced subgraph isomorphic to some Kk?1‐free graph M, we construct a (k, p + q ? 1)‐graph on n(G) + n(H) + n(M) vertices. This implies that R (k, p + q ? 1) ≥ R (k, p) + R (k, q) + n(M) ? 1, where R (s, t) is the classical two‐color Ramsey number. By applying this construction, and some its generalizations, we improve on 22 lower bounds for R (s, t), for various specific values of s and t. In particular, we obtain the following new lower bounds: R (4, 15) ≥ 153, R (6, 7) ≥ 111, R (6, 11) ≥ 253, R (7, 12) ≥ 416, and R (8, 13) ≥ 635. Most of the results did not require any use of computer algorithms. © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 231–239, 2004 相似文献
14.
The size‐Ramsey number of a graph G is the minimum number of edges in a graph H such that every 2‐edge‐coloring of H yields a monochromatic copy of G. Size‐Ramsey numbers of graphs have been studied for almost 40 years with particular focus on the case of trees and bounded degree graphs. We initiate the study of size‐Ramsey numbers for k‐uniform hypergraphs. Analogous to the graph case, we consider the size‐Ramsey number of cliques, paths, trees, and bounded degree hypergraphs. Our results suggest that size‐Ramsey numbers for hypergraphs are extremely difficult to determine, and many open problems remain. 相似文献
15.
The Ramsey number r(H,Kn) is the smallest integer N so that each graph on N vertices that fails to contain H as a subgraph has independence number at least n. It is shown that r(K2,m,Kn)(m−1+o(1))(n/log n)2 and r(C2m,Kn)c(n/log n)m/(m−1) for m fixed and n→∞. Also r(K2,n,Kn)=Θ(n3/log2 n) and
. 相似文献
16.
该文给出:对于偶数m≥4当n→ ∞时 r(Wm,Kn)≤l(1+o(1))C1(m) (n/logn ) (2m-2)/(m-2)对于奇数m≥5当n→∞时r(Wm,Kn)≤(1+o(1))C2(m) (n2m/m+1/log n)(m+1)/(m-1) .特别地,C2(5)=12. 以及 c(n/logn)5/2≤r(K4,Kn)≤ (1+o(1)) n3/(logn)2.此外,该文还讨论了轮和完全图的 Ramsey 数的一些推广. 相似文献
17.
Arès Méroueh 《Journal of Graph Theory》2019,90(2):172-188
Let be the Ramsey number of an -uniform loose cycle of length versus an -uniform clique of order . Kostochka et al. showed that for each fixed , the order of magnitude of is up to a polylogarithmic factor in . They conjectured that for each we have . We prove that , and more generally for every that . We also prove that for every and , if is odd, which improves upon the result of Collier-Cartaino et al. who proved that for every and we have . 相似文献
18.
The -color bipartite Ramsey number of a bipartite graph is the least integer for which every -edge-colored complete bipartite graph contains a monochromatic copy of . The study of bipartite Ramsey numbers was initiated, over 40 years ago, by Faudree and Schelp and, independently, by Gyárfás and Lehel, who determined the 2-color Ramsey number of paths. In this paper we determine asymptotically the 3-color bipartite Ramsey number of paths and (even) cycles. 相似文献
19.
本文得出了三个关于三阶Ramsey数性质的结论,由这三个结论直接导出了若干三阶Ramsey数的下界结果. 相似文献