首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Phosphatidylethanolamines (PE) are one of the major components of cells membranes, namely in skin and in retina, that are continuously exposed to solar UV radiation being major targets of photooxidation damage. In addition, due to the presence of the free amine group, PE can also undergo glycation, in hyperglycemic conditions which may increase the susceptibility to oxidation. The aim of this study is to develop a model, based on mass spectrometry (MS) analysis, to identify photooxidative degradation of selected PE (POPE: PE 16:0/18:1, PLPE: PE 16:0/18:2, PAPE: PE 16:0/20:4) and glycated PEs due to UV irradiation. Photooxidation products were analysed by electrospray ionization MS (ESI‐MS) and tandem MS (ESI‐MS/MS) in positive and negative mode. Emphasis is placed in the influence of glycation in the generation of distinct photooxidation products. ESI‐MS spectra of PE after UV photo‐irradiation showed mainly hydroperoxy derivatives, due to oxidation of unsaturated fatty acyl chains. Glycated PE gave rise to several new photooxidation products formed due to oxidative cleavages of the glucose moiety, namely between C1 and C2, C2 and C3, and C5 and C6 of this sugar unit. These new products were identified by ESI‐MS/MS in positive mode showing distinct neutral loss depending on the different structure of the polar head group. These new identified advanced glycated photooxidation products may have a deleterious role in the etiology of diabetic retinopathy and in diabetic retinal microvascular complications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Phosphatidylethanolamine glycation occurs in diabetic patients and was found to be related with oxidative stress and with diabetic complications. Glycated phosphatidylethanolamines seem to increase oxidation of other molecules; however, the reason why is not understood. In this work, we have studied the oxidation of glycated phosphatidylethanolamines (1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylethanolamine (PLPE) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (dPPE)) using a Fenton system. Liquid chromatography–electrospray ionization (ESI)–mass spectrometry and ESI–tandem mass spectrometry in both positive and negative modes were used for detecting and identifying the oxidation products. We were able to identify several oxidation products with oxidation in unsaturated sn-2 acyl chain of PLPE, as long- and short-chain products with main oxidation sites on C-7, C-8, C-9, and C-12 carbons. Other products were identified in both glycated PLPE and glycated dPPE, revealing that oxidation also occurs in the glycated polar head. This fact has not been reported before. These products may be generated from oxidation of glycated phosphatidylethanolamines (PE) as Schiff base, leading to short-chain product without the amine moiety, due to cleavage of glycated polar head and long-chain product with two keto groups linked to the glycated polar head or from glycated PE as Amadori product, short-chain products with –NHCHO and –NHCHOHCHO terminal in polar head. Oxidation of glycated phosphatidylethanolamines occurred more quickly than the oxidation of non-glycated phosphatidylethanolamines probably because of the existence of more oxidation sites derived from glycation of polar head group. Monitoring glycated polar head oxidation could be important to evaluate oxidative stress modifications that occur in diabetic patients.  相似文献   

3.
Dopamine [DA]+ (m/z 154), DA dimer [2DA‐H]+ (m/z 307) and DA quinone [DAQ]+ (m/z 152) are detected in positive ion mode electrospray ionization mass spectrometry (ESI MS) of dopamine in 50/1/49 (vol%) water/acetic acid/methanol. H/D exchange experiments support a covalent structure of DA dimer. Thus, ESI of DA may involve 1e?, 1H+ oxidation processes followed by rapid radical dimerization. The DA quinone signal is low in ESI MS, which indicates a low efficiency of the 2e?, 2H+ oxidation reaction. On‐line electrochemistry ESI MS (EC/ESI MS) with low electrochemical cell voltage floated on high ES voltage increases electrospray current and improves sensitivity for DA. The DA quinone signal increases and DA dimer signal decreases. A new configuration of the ESI MS instrument with a cone‐shaped capillary inlet significantly enhanced sensitivity of ESI and EC/ESI MS measurements. A DA quinone‐cysteine adduct [DAQ+Cys]+ was detected in solutions of DA with cysteine (Cys). ESI MS and EC/ESI MS indicate formation of the DA quinone‐cysteine adduct by 1e? pathway. Oxidation pathways in ESI MS are relevant to biological reactivity of DA and Cys.  相似文献   

4.
Phosphatidylethanolamines (PEs) are abundant lipid constituents of the cellular membrane. The amino group of PEs exhibits high reactivity with hypochlorous acid that is generated under inflammatory conditions in vivo. The analysis of the resulting PE mono- and dichloramines is of significant interest since these species represent important mediators of lipid peroxidation. We have shown in a previous communication that mass spectrometric detection of PE chloramines is only possible with ESI MS, whereas MALDI-TOF MS fails to detect these products if standard matrices are used.  相似文献   

5.
The adduct ions of two tetramolecular G‐quadruplexes formed from the d(TGGGGT) and d(TTGGGGGT) single strands with a group of cationic porphyrins, with different charges and substituents, and one neutral porphyrin, were investigated by ESI‐MS and ESI‐MS/MS in the negative ion mode. Formation of [Q + nNH4++Pp+‐(z + n + p)H+]z‐ adduct ions (where Q = quadruplex, n = number of quartets minus 1, P = porphyrin and p+ =0,1,2,3,4) indicates that the porphyrins are bound outside the quadruplexes providing an additional stabilization to those structures. The fragmentation pathways of the [Q + nNH4++Pp+‐(z + n + p)H+]z‐ adduct ions depend on the number of positive charges (p+) of the porphyrins and on the overall complex charge (z), but do not show a significant dependence on the type of the substituent groups in the porphyrins. Formation of the ‘unfilled’ ions [Q + Pp+‐(z + p)H+]z‐ predominates for porphyrins with a higher number of positive charges. Strand separation with the formation of [T + Pp+‐(z‐2 + p)H+](z‐2)‐ and (SS‐2H+)2‐ ions, where T = [d(TG4T)]3 and [d(T2G5T)]3 and SS = d(TG4T) and d(T2G5T) is only observed for the complexes with a higher overall negative charge. Porphyrin loss with the formation of [Q + nNH4+‐(z + n)H+]z‐ ions occurs predominantly for the neutral and monocharged porphyrins. The predominant formation of the ‘unfilled’ ions, [Q + Pp+‐(z + n)H+]z‐, for porphyrins with a higher number of charges shows that these porphyrins can prevent strand separation and preserve, at least partially, the quadruplex structure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The relationship between one‐electron (e?) oxidation processes and the formation of radical cations of endogenous and exogenous compounds in vivo is of considerable interest. This paper reports on the experiments that allow FTICR mass spectrometric (MS) detection of ion signals that are consistent with the formation of radical cations of caffeine (CA) and theophylline (TP) during electrospray ionization (ESI) in ESI FTICR MS and in on‐line electrochemistry (EC)/ESI FTICR MS in positive mode. Significantly, the signals of the radicals of CA?+ and TP?+can be enhanced by simple modifications of the operating conditions in ESI MS, facilitating investigations of radical formation and related reactions.  相似文献   

7.
The sensitivity of detection of uric acid (H2U) in positive ion mode electrospray ionization mass spectrometry (ESI MS) was enhanced by uric acid oxidation during electrospray ionization. With a carrier solution of pH 6.3>pKa1=5.4 of H2U, protonated unoxidized uric acid [H2U+H]+ (m/z 169) was detected together with the protonated uric acid dimer [2H2U+H]+ (m/z 337). The dimer likely forms by 1e? oxidation of urate (HU?) followed by rapid radical dimerization. A covalent structure of the dimer was verified by H/D exchange experiments. Efficiency of 2e?, 2H+ oxidation of uric acid is low during ESI in pH 6.3 carrier solution and improves when a low on‐line electrochemical cell voltage is floated on the high voltage of the ES in on‐line electrochemistry ESI MS (EC/ESI MS). The intensity of the uric acid dimer decreases with an increase in the low applied voltage. In a carrier solution with 0.1 M KOH, pH 12.7>pKa2=9.8 of H2U, allantoin (Allnt) (MW 158.04), the final 2e?, 2H+ oxidation product of uric acid, was detected as a potassium complex [K(Allnt)+K]+ (m/z 235) and the [2H2U+H]+ dimer was not detected. In direct ESI MS analysis of 1000‐fold diluted urine [NaHU+H]+ (pKsp NaHU=4.6) was detected in 40/60 (vol%) water/methanol, 1 mM NH4Ac, pH ca. 6.3 carrier solution. A new configuration of the ESI MS instrument with a cone‐shaped capillary inlet significantly enhanced sensitivity in ESI and EC/ESI MS measurements of uric acid.  相似文献   

8.
This study reports the identification of oligomeric alkenylperoxides by electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (ESI‐MS2), during the oxidation of oleic, linoleic and linolenic acids with Fenton's (Fe2+/H2O2) and Fe2+/O2 systems. The reactions were followed by ferrous oxidation‐xylenol orange method together with GC‐MS and GC‐FID, allowing to observe that both oxidation systems are different in terms of hydroperoxide evolution, probably due to the presence of different intermediate reactive species: perferryl ion and OH· radical responsible for the decomposition of lipid hydroperoxides and formation of new compounds. The analysis of ESI‐MS in the negative mode, obtained after oxidation of each fatty acid, confirmed the presence of the monomeric oxidation products together with other compounds at high mass region above m/z 550. These new ions were attributed to oligomeric structures, identified by the fragmentation pathways observed in the tandem mass spectra. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The efficiency of 5,10,15,20‐tetrakis(1‐methylpyridinium‐4‐yl)porphyrin tetra‐iodide (Tetra‐Py+‐Me) in the photodynamic inactivation of single‐species biofilms of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans and mixed biofilms of S. aureus and C. albicans was evaluated. The effect on the extracellular matrix of P. aeruginosa was also assessed. Irradiation with white light up to an energy dose of 64.8 J cm?2 in the presence of 20 μm of Tetra‐Py+‐Me caused significant inactivation in all single‐species biofilms (3–6 log reductions), although the susceptibility was attenuated in relation to planktonic cells. In mixed biofilms, the inactivation of S. aureus was as efficient as in single‐species biofilms but the susceptibility of C. albicans decreased. In P. aeruginosa biofilms, a reduction of 81% in the polysaccharide content of the matrix was observed after treatment with a 20 μm PS concentration and a total light dose of 64.8 J cm?2. The results show that the Tetra‐Py+‐Me causes significant inactivation of the microorganisms, either in biofilms or in the planktonic form, and demonstrate that polysaccharides of the biofilm matrix may be a primary target of photodynamic damage.  相似文献   

10.
A series of complexes of the type [(TpR1,R2)M(X)] (Tp=trispyrazolylborato) with R1/R2 combinations Me/tBu, Ph/Me, iPr/iPr, Me/Me and for M=Mn or Fe coordinating [PzMe,tBu]? (Pz=pyrazolato) or Cl? as co‐ligand X has been synthesised. Although the chloride complexes were very unreactive and stable in air, the pyrazolato series was far more reactive in contact with oxidants like O2 and tBuOOH. The [(TpR1,R2)M(PzMe,tBu)] complexes proved to be active pre‐catalysts for the oxidation of cyclohexene with tBuOOH, reaching turnover frequencies (TOFs) ranging between moderate and good in comparison to other manganese catalysts. Cyclohexene‐3‐one and cyclohexene‐3‐ol were always found to represent the main products, with cyclohexene oxide occasionally formed as a side product. The ratios of the different oxidation products varied with the reaction conditions: in the case of a peroxide/alkene ratio of 4:1, considerably more ketone than alcohol was obtained and cyclohexene oxide formation was almost negligible, whereas a ratio of 1:10 led to a significant increase of the alcohol proportion and to the formation of at least small amounts of the epoxide. Pre‐treatment of the dissolved [(TpR1,R2)M(PzMe,tBu)] pre‐catalysts with O2 led to product distributions and TOFs that were very similar to those found in the absence of O2, so that it may be argued that tBuOOH and O2 both lead to the same active species. The results of EPR spectroscopy and ESI‐MS suggest that the initial product of the reaction of [(TpMe,Me)Mn(PzMe,tBu)] with O2 contains a MnIII(O)2MnIV core. Prolonged exposure to O2 leads to a different dinuclear complex containing three O‐bridges and resulting in different TOFs/product distributions. Analogous findings were made for other complexes and formation of these overoxidised products may explain the deviation of the catalytic performances if the reactions are carried out in an O2 atmosphere.  相似文献   

11.
The oxidation of α‐(1 → 5)‐l ‐arabinotriose (Ara3), an oligosaccharide structurally related to side chains of coffee arabinogalactans, was studied in reaction with hydroxyl radicals generated under conditions of Fenton reaction (Fe2+/H2O2). The acidic and neutral oxidation products were separated by ligand exchange/size‐exclusion chromatography, subsequently identified by electrospray ionisation mass spectrometry (ESI–MS) and structurally characterised by tandem MS (ESI–MS/MS). In acidic fraction were identified several oxidation products containing an acidic residue at the corresponding reducing end of Ara3, namely arabinonic acid, and erythronic, glyceric and glycolic acids formed by oxidative scission of the furanose ring. In neutral fractions were identified derivatives containing keto, hydroxy and hydroperoxy moieties, as well as derivatives resulting from the ring scission at the reducing end of Ara3. In both acidic and neutral fractions, beyond the trisaccharide derivatives, the corresponding di‐ and monosaccharide derivatives were identified indicating the occurrence of oxidative depolymerisation. The structural characterisation of these oxidation products by ESI–MS/MS allowed the differentiation of isobaric and isomeric species of acidic and neutral character. The species identified in this study may help in detection of roasting products associated with the free radical‐mediated oxidation of coffee arabinogalactans. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The structures of phosphatidylethanolamine (PE) in Leishmania infantum are unique in that they consist of a rare cyclopropane fatty acid (CFA) containing PE subfamily, including CFA‐containing plasmalogen PE species. In this contribution, we applied multiple‐stage linear ion‐trap combined with high‐resolution mass spectrometry to define the structures of PEs that were desorbed as [M – H]? and [M – H + 2Li]+ ions by ESI, respectively. The structural information arising from MSn on both the molecular species are complimentary, permitting complete determination of PE structures, including the identities of the fatty acid substituents and their location on the glycerol backbone, more importantly, the positions of the double bond(s) and of the cyclopropane chain of the fatty acid chain, directing to the realization of the CFA biosynthesis pathways that were reported previously. We also uncovered the presence of a minor dimethyl‐PE subclass that has not been previously reported in L. infantum. This LIT MSn mass spectrometric approach led to unambiguous identification of PE molecules including many isomers in complex mixture that would otherwise be very difficult to define using other analytical approaches. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
《化学:亚洲杂志》2017,12(9):1013-1019
Apart from sensing and imaging, luminogens with aggregation‐induced emission (AIE) are also interesting for photosensitizing. The photosensitizing behavior and bacteria‐killing performance of a pyridinium‐substituted tetraphenylethylene with an alkyne group ( TPE‐A‐Py+ ) is reported herein. Interestingly, TPE‐A‐Py+ exhibits higher photosensitizing efficiency than TPE‐Py+ (without alkyne group) when I was used as a counteranion. This is well explained by the fact that the ΔΕ ST between the excited singlet state (S 1) and triplet state (T 1) was lower for TPE‐A‐Py+ than for TPE‐Py+ , according to theoretical calculations. Moreover, replacement of I with other anions (PF6, N(SO2CF3)2 and BPh4) led to a decrease of photosensitizing efficiency for TPE‐A‐Py+ . Notably, TPE‐A‐Py+ could be used as an efficient photosensitizer to photo‐inactivate ampicillin‐resistant (ampr) E. coli at low concentration under white‐light irradiation very quickly.  相似文献   

14.
Three new iron(II)‐benzilate complexes [(N4Py)FeII(benzilate)]ClO4 ( 1 ), [(N4PyMe2)FeII(benzilate)]ClO4 ( 2 ) and [(N4PyMe4)FeII(benzilate)]ClO4 ( 3 ) of neutral pentadentate nitrogen donor ligands have been isolated and characterized to study their dioxygen reactivity. Single‐crystal X‐ray structures reveal a mononuclear six‐coordinate iron(II) center in each case, where benzilate binds to the iron center in monodentate mode via one carboxylate oxygen. Introduction of methyl groups in the 6‐positions of the pyridine rings makes the N4PyMe2 and N4PyMe4 ligand fields weaker compared to that of the parent N4Py ligand. All the complexes ( 1 – 3 ) react with dioxygen to decarboxylate the coordinated benzilate to benzophenone quantitatively. The decarboxylation is faster for the complex of the more sterically hindered ligand and follows the order 3 > 2 > 1 . The complexes display oxygen atom transfer reactivity to thioanisole and also exhibit hydrogen atom transfer reactions with substrates containing weak C?H bonds. Based on interception studies with external substrates, labelling experiments and Hammett analysis, a nucleophilic iron(II)‐hydroperoxo species is proposed to form upon two‐electron reductive activation of dioxygen by each iron(II)‐benzilate complex. The nucleophilic oxidants are converted to the corresponding electrophilic iron(IV)‐oxo oxidant upon treatment with a protic acid. The high‐spin iron(II)‐benzilate complex with the weakest ligand field results in the formation of a more reactive iron‐oxygen oxidant.  相似文献   

15.
Phosphatidylethanolamines (PEs) are one of the major constituents of cellular membranes, and, along with other phospholipid classes, have an essential role in the physiology of cells. Profiling of phospholipids in biological samples is currently done using mass spectrometry (MS). In this work we describe the MS fragmentation of sodium adducts of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (POPE) and 2-linoleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (PLPE). This study was performed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) using three different instruments and also by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). All MS/MS spectra show product ions related to the polar head fragmentation and product ions related to the loss of acyl chains. In ESI-MS/MS spectra, the product ions [M+Na-R1COOH-43]+ and [M+Na-R2COOH-43]+ show different relative abundance, as well as [M+Na-R1COOH]+ and [M+Na-R2COOH]+ product ions, allowing identification of both fatty acyl residues of PEs, and their specific location. MALDI-MS/MS shows the same product ions reported before and other ions generated by charge-remote fragmentation of the C3-C4 bond (gamma-cleavage) of fatty acyl residues combined with loss of 163 Da. These fragment ions, [M+Na-(R2-C2H3)-163]+ and [M+Na-(R1-C2H3)-163]+, show different relative abundances, and the product ion formed by the gamma-cleavage of sn-2 is the most abundant. Overall, differences noted that are important for identification and location of fatty acyl residues in the glycerol backbone are: relative abundance between the product ions [M+Na-R1COOH-43]+ > [M+Na-R2COOH-43]+ in ESI-MS/MS spectra; and relative abundance between the product ions [M+Na-(R2-C2H3)-163]+ > [M+Na-(R1-C2H3)-163]+ in MALDI-MS/MS spectra.  相似文献   

16.
The study aims to develop a rapid, sensitive ultra‐performance liquid chromatography coupled with an electrospray ionization quadruple time‐of‐flight tandem mass spectrometry (UPLC/Q‐TOF‐MS) analytical method for identifying glycerophospholipids (GPLs) from RAW264.7 cells. A total of 78 GPLs including 22 phosphatidylethanolamines (PEs), 49 phosphatidylcholines (PCs), four phosphatidylglycerols, one phosphatidylinositol and two unknown GPLs were identified. PC (14:0/16:1), PC (14:0/16:0), PE (0:0/20:3), PE (22:5/0:0) and PE (22:3/0:0) were identified for the first time. The UPLC/Q‐TOF‐MS method is suitable for targeting analysis of GPLs from RAW264.7 cells, which allows us to find out new GPLs compositions related to inflammatory diseases and to explain their pharmacological roles in inflammatory process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A novel analytical technique for the structural elucidation of compounds bearing a tertiary amine side chain via “in vial” instantaneous oxidation and liquid chromatography mass spectrometry (LC‐MS) was developed. A series of lidocaine homologs and benzimidazole derivatives with a major/single amine representative base peak in both their EI‐MS and ESI‐MS/MS spectra were subjected to oxidation by a 0.1% solution of hydrogen peroxide (including several 16O/18O exchange experiments), followed by LC‐ESI‐MS/MS analysis. The N‐oxide counterparts promoted extensive fragmentation with complete coverage of all parts of the molecule, enabling detailed structural elucidation and unambiguous identification of the unoxidized analytes at low nanogram per milliliter levels.  相似文献   

18.
Hydralazine has been widely employed in the development of drugs, derivatization reagents, and ligands. In the present work, we reported a new type of dehydrogenated ion [M ? H]+ that was produced from the hydralazine derivative of hexanal in electrospray ionization mass spectrometry (ESI‐MS). The formation of [M ? H]+ ions in the ESI‐MS was found to be independent on the mobile phase composition of the liquid chromatography and ESI source parameters. A series of hydralazine derivatives of aldehyde were investigated to confirm this phenomenon. The results showed that hydralazine derivatives of aldehydes that contained an sp3 hybridization carbon with a hydrogen at the α‐position of aldehydes could form the unexpected [M ? H]+ ions, whereas hydralazine derivative of acetone could only generate [M + H]+ ion in the ESI‐MS. We proposed the possible formation mechanism of [M ? H]+ ion for the hydralazine derivatives of aldehydes: the [M ? H]+ ion was possibly formed by the loss a hydrogen molecule (H2) from the protonated ion [M + H]+. The results obtained from density functional theory (DFT) calculations supported this proposed formation mechanism of [M ? H]+ ion.  相似文献   

19.
The oxidation behavior of DNA and RNA nucleotides is studied by an on‐line set‐up consisting of an electrochemical thin‐layer cell (EC) directly coupled to electrospray ionization mass spectrometry (ESI‐MS). This set‐up allows the generation of nucleotide oxidation products in the electrochemical cell at increasing potentials. Moreover, the products are determined directly, without isolation or derivatization steps, by electrospray ionization time of flight mass spectrometry (ESI‐ToF/MS). The dependence of the mass spectra on the applied potential is displayed as ‘mass voltammograms’. An advanced set‐up, consisting of the electrochemical cell coupled to electrospray ionization tandem mass spectrometry (EC/ESI‐MS/MS) allows further structure elucidation based on fragmentation experiments. The electrochemical conversion is performed using a boron doped diamond (BDD) working electrode, which is known to generate hydroxyl radicals at high potentials. The capability of the EC‐MS system to generate highly relevant oxidation products which also occur upon oxidative damage in vivo is demonstrated in this study by the formation of well known biomarkers for DNA damage, including 2′‐deoxy‐8‐oxo‐guanosine 5′‐monophosphate.  相似文献   

20.
Sesquiterpene lactones (SL) have been reported with various biological effects. Among the described SL skeletons, hirsutinolide and glaucolide have not been extensively studied by mass spectrometry (MS), especially how to distinguish them in organic matrices. Thus, this paper reports (1) a strategy of their differentiation based on MS behavior during the ionization and (2) a proposal of the fragmentation pattern for both SL‐subtypes. ESI(+)‐HRMS data of four isolated SL (hirsutinolides 1 and 3 ; glaucolides 2 and 4 ) were recorded by direct and UPLC water‐sample combined injections. These analyses revealed that hirsutinolides and glaucolides formed [M+Na]+ ion during the operation of the direct MS injection, and ([M+Na]+ and [M+H‐H2O]+) and [M+H]+ ions were respectively observed for hirsutinolides and glaucolides during the operation of combined UPLC water and sample MS injection. Computational simulations showed that the complex hirsutinolide ( 1 )‐Na+ formed with a lower preparation energy compared with the complex glaucolide ( 2 )‐Na+. However, despite their different behavior during the ionization process, ESI(+)‐HRMS/MS analyses of 1 ‐ 4 gave similar fragmentation patterns at m/z 277, 259, 241, and 231 that can be used as diagnostic ions for both skeletons. Moreover, the differentiation strategy based on the nature of the complex SL‐adducts and their MS/MS fragmentation pattern were successfully applied for the chemical characterization of the extract from Vernonanthura tweedieana using UPLC‐ESI‐HRMS/MS. Among the characterized metabolites, SL with hirsutinolide and glaucolide skeletons showed the aforementioned diagnostic fragments and an ionization behavior that was similar to those observed during the water‐sample combined injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号