首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
A simple and efficient synthesis of novel 2‐heteroaryl‐substituted 1H‐indole‐2‐carboxylates and γ‐carbolines, compounds 1 – 3 , from methyl 2‐(2‐methoxy‐2‐oxoethyl)‐1‐methyl‐1H‐indole‐3‐carboxylate ( 4 ) by the enaminone methodology is presented.  相似文献   

2.
Some new compounds (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 5a–e were prepared by 1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐ethanone and various aromatic aldehydes. Then one pot reaction was happened by compounds 5a–e with hydrazine hydrate in acetic acid or propionic acid, respectively, to give the title compounds 1acyl‐5‐aryl‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐4,5‐dihydro‐1H‐pyrazoles 6a–i . All structures were established by MS, IR, CHN, 1H‐NMR and 13C‐NMR spectral data. J. Heterocyclic Chem., (2012).  相似文献   

3.
A series of novel 1‐methyl‐3‐(4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles was synthesized in three steps from 5‐(1‐methyl‐1H‐indazol‐3‐yl)‐4‐phenyl‐2H‐1,2,4‐triazole‐3(4H)‐thiones. 5‐(1‐Methyl‐1H‐indazol‐3‐yl)‐4‐phenyl‐2H‐1,2,4‐triazole‐3(4H)‐thiones were converted into 1‐methyl‐3‐(5‐(methylsulfonyl)‐4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles upon methylation followed by treatment with aq. KMnO4. The reaction of 1‐methyl‐3‐(5‐(methylsulfonyl)‐4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles with Raney nickel resulted in desulphonylation to afford corresponding 1‐methyl‐3‐(4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles. All the new synthesized compounds were characterized by spectral techniques.  相似文献   

4.
A series of substituted N‐(4‐substituted‐benzoyl)‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 13 ) and N‐arylsulfonyl‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 14 ) were prepared from the reaction of 3‐(1‐methyl‐1H‐imidazol‐2‐yl)propan‐1‐amine ( 7 ) with substituted benzoyl chloride or substituted‐benzene sulfonyl chloride respectively. Compound 7 was prepared by two independent methods.  相似文献   

5.
Some new target products 5‐aryl‐4,5‐dihydro‐3‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐1‐(4‐phenylthiazol‐2‐yl)pyrazoles 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j have been synthesized by reaction of 2‐bromo‐1‐phenylethanone and compounds 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 4i , 4j which were prepared from the combination of thiosemicarbazide and (E)‐3‐aryl‐1‐(5‐methyl‐1‐p‐tolyl‐1H‐1,2,3‐triazol‐4‐yl)‐prop‐2‐en‐1‐ones 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h , 3i , 3j . All the structures were established by MS, IR, CHN, and 1H NMR spectra data. Synthesis of structure diversity is applied. J. Heterocyclic Chem., (2011).  相似文献   

6.
The title compound, C6H9N2O2+·Cl·C6H8N2O2·H2O, contains one 2‐(3‐methyl‐1H‐imidazol‐3‐ium‐1‐yl)acetate inner salt molecule, one 1‐carboxymethyl‐3‐methyl‐1H‐imidazol‐3‐ium cation, one chloride ion and one water molecule. In the extended structure, chloride anions and water molecules are linked via O—H...Cl hydrogen bonds, forming an infinite one‐dimensional chain. The chloride anions are also linked by two weak C—H...Cl interactions to neighbouring methylene groups and imidazole rings. Two imidazolium moieties form a homoconjugated cation through a strong and asymmetric O—H...O hydrogen bond of 2.472 (2) Å. The IR spectrum shows a continuous D‐type absorption in the region below 1300 cm−1 and is different to that of 1‐carboxymethyl‐3‐methylimidazolium chloride [Xuan, Wang & Xue (2012). Spectrochim. Acta Part A, 96 , 436–443].  相似文献   

7.
Organometallic 5d6 Transition Metal Complexes of 1‐Methyl‐(2‐alkylthiomethyl)‐1H‐benzimidazole Ligands: Structures and Electrochemical Oxidation The complexes [(mmb)Re(CO)3Cl], [(mtb)Re(CO)3Cl], [(mmb)OsCl(Cym)](PF6) and [(Cym)OsCl(mtb)](PF6) where Cym = p‐cymene, mmb = 1‐methyl‐(2‐methylthiomethyl)‐1H‐benzimidazole and mtb = 1‐methyl‐(2‐tert‐butylthiomethyl)‐1H‐benzimidazole were synthesized and, except for the latter, structurally characterized. In comparison with other late transition metal compounds of these N‐S chelate ligands the rhenium(I) systems exhibit a balanced coordination to both N and S donor atoms. Anodic one‐electron oxidation produces EPR‐silent rhenium(II) states whereas the osmium(III) species [(mmb)OsCl(Cym)]2+ could be identified via EPR and UV/VIS spectroelectrochemistry.  相似文献   

8.
(Z)‐3‐(1H‐Indol‐3‐yl)‐2‐(3‐thienyl)­acrylo­nitrile, C15H10N2S, (I), and (Z)‐3‐[1‐(4‐tert‐butyl­benzyl)‐1H‐indol‐3‐yl]‐2‐(3‐thienyl)­acrylo­nitrile, C26H24N2S, (II), were prepared by base‐catalyzed reactions of the corresponding indole‐3‐carbox­aldehyde with thio­phene‐3‐aceto­nitrile. 1H/13C NMR spectral data and X‐ray crystal structures of compounds (I) and (II) are presented. The olefinic bond connecting the indole and thio­phene moieties has Z geometry in both cases, and the mol­ecules crystallize in space groups P21/c and C2/c for (I) and (II), respectively. Slight thienyl ring‐flip disorder (ca 5.6%) was observed and modeled for (I).  相似文献   

9.
A series of novel (Z)‐1‐tert‐butyl (or phenyl)‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐ethanone O‐[2,4‐dimethylthiazole (or 4‐methyl‐1,2,3‐thiadiazole) ?5‐carbonyl] oximes 5a – 5c and (1Z, 3Z)‐4,4‐dimethyl‐1‐substitutedphenyl‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐pent‐1‐en‐3‐one O‐[2,4‐dimethylthiazole (or 4‐methyl‐1,2,3‐thiadiazole)‐5‐carbonyl] oximes 6a – 6e were synthesized by the condensations of (Z)‐1‐tert‐butyl (or phenyl)‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐ethanone oximes 3 or (1Z, 3Z)‐4,4‐dimethyl‐1‐substitutedphenyl‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐pent‐1‐en‐3‐one oximes 4 with 2,4‐dimethylthiazole‐5‐carbonyl chloride or 4‐methyl‐1,2,3‐thiadiazole‐5‐carbonyl chloride in the basic condition. Their structures were confirmed by IR, 1H NMR, mass spectroscopy, and elemental analyses. The results of preliminary bioassays showed the title compounds 5 and 6 exhibited moderate to good fungicidal activities. For example, compound 6c possessed 86.4% inhibition against Fusarium oxysporum, and compound 6b exhibited 86.4 and 100% inhibition against Fusarium oxysporum and Cercospora arachidicola Hori at the concentration of 50 mg/L, respectively.  相似文献   

10.
The title diastereoisomers, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate and methyl 5‐(S)‐[2‐(R)‐methoxycarbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxylate, both C19H23N3O5, have been studied in two crystalline forms. The first form, methyl 5‐(S)‐[2‐(S)‐methoxy­carbonyl)‐2,3,4,5‐tetrahydropyrrol‐1‐ylcarbonyl]‐1‐(4‐methylphenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate–methyl 5‐(S)‐[2‐(R)‐methoxy­carbonyl)‐2,3,4,5‐tetra­hydro­pyrrol‐1‐yl­carbonyl]‐1‐(4‐methylphenyl)‐4,5‐dihydropyrazole‐3‐carboxylate (1/1), 2(S),5(S)‐C19H23N3O5·2(R),5(S)‐C19H23N3O5, contains both S,S and S,R isomers, while the second, methyl 5‐(S)‐[2‐(S)‐methoxycarbonyl)‐2,3,4,5‐tetrahydro­pyrrol‐1‐ylcarbonyl]‐1‐(4‐methyl­phenyl)‐4,5‐di­hydro­pyrazole‐3‐carboxyl­ate, 2(S),5(S)‐C19H23N3O5, is the pure S,S isomer. The S,S isomers in the two structures show very similar geometries, the maximum difference being about 15° on one torsion angle. The differences between the S,S and S,R isomers, apart from those due to the inversion of one chiral centre, are more remarkable, and are partially due to a possible rotational disorder of the 2‐­(methoxycarbonyl)tetrahydropyrrole group.  相似文献   

11.
Although it has not proved possible to crystallize the newly prepared cyclam–methylimidazole ligand 1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane (LIm1), the trans and cis isomers of an NiII complex, namely trans‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis‐aqua{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans‐{1‐[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis‐{1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24‐hydrate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8‐bis[(1‐methyl‐1H‐imidazol‐2‐yl)methyl]‐1,4,8,11‐tetraazacyclotetradecane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.  相似文献   

12.
A series of novel 5‐aryl‐1‐(aryloxyacetyl)‐3‐(tert‐butyl or phenyl)‐4‐(1H‐1,2,4‐triazol‐1‐yl)‐4,5‐dihydropyrazole 3a – 3n were synthesized by the annulation of 2‐aryloxyacetohydrazides with 3‐aryl‐1‐t‐butyl (or phenyl)‐2‐(1H‐1,2,4‐triazol‐1‐yl)prop‐2‐en‐1‐ones ( 2 ) in the presence of a catalytic amount of acetic acid. Compounds 2 were obtained by the Knoevenagel reactions of 1‐t‐butyl (or phenyl)‐2‐(1H‐1,2,4‐triazol‐1‐yl)ethanone ( 1 ) with aromatic aldehydes in the presence of piperidine. Their structures were confirmed by IR, 1H‐NMR, ESI‐MS, and elemental analyses. The preliminary bioassay indicated that some compounds displayed moderate to excellent fungicidal activity. For example, compounds 3l , 3m , and 3n possessed 100% inhibition against Cercospora arachidicola Hori at the concentration of 50 mg/L.  相似文献   

13.
Highly selective all solid state electrochemical sensor based on a synthesized compound i.e. 2‐(1‐(2‐((3‐(2‐hydroxyphenyl)‐1H‐pyrozol‐1‐yl)methyl)benzyl)‐1H‐pyrazol‐3‐yl)phenol (I) as an ionophore has been prepared and investigated for the selective quantification of chromium(III) ions. The effect of various plasticizers, viz. dibutyl phosphonate (DBP), dibutyl(butyl) phosphonate (DBBP), nitrophenyl octyl ether (NPOE), tris‐(2‐ethylhexyl)phosphonate (TEP), tri‐butyl phosphonate (TBP), dioctyl phthalate (DOP), dioctyl sebacate (DOS), benzyl acetate (BA) and acetophenone (AP) along with anion excluders NaTPB (sodium tetraphenyl borate) and KClTPB (potassium(tetrakis‐4‐chlorophenyl)borate was also studied. The optimum composition of the best performing membrane contained (I):KClTPB:NPOE:PVC in the ratio 15 : 3 : 40 : 42 w/w. The sensor exhibited near Nernstian slope of 20.1±0.2 mV/decade of activity in the working concentration range of 1.2×10?7–1.0×10?1 M, and in a pH range of 3.8–4.5. The sensor exhibited a fast response time of 10 s and could be used for about 5 months without any considerable divergence in potentials. The proposed sensor showed very good selectivity over most of the common cations including Na+, Li+, K+, Cu2+, Sr2+, Ni2+, Co2+, Ba2+, Hg2+, Pb2+, Zn2+, Cs+, Mg2+, Cd2+, Al3+, Fe3+and La3+. The activity of Cr(III) ions was successfully determined in the industrial waste samples by using this sensor.  相似文献   

14.
Two chemical isomers of 3‐nitro­benzotrifluoride, namely 1‐(4‐chloro­phenyl­sulfanyl)‐2‐nitro‐4‐(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (I), and 1‐(4‐chloro­phenyl­sulfanyl)‐4‐nitro‐2‐(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (II), have been prepared and their crystal structures determined with the specific purpose of forming a cocrystal of the two. The two compounds display a similar conformation, with dihedral angles between the benzene rings of 83.1 (1) and 76.2 (1)°, respectively, but (I) packs in P while (II) packs in P21/c, with C—H⋯O interactions. No cocrystal could be formed, and it is suggested that the C—H⋯O associations in (II) prevent intermolecular mixing and promote phase separation.  相似文献   

15.
A convenient one pot synthesis of 20 (1‐(2‐(benzyloxy)‐2‐oxoethyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl benzoate analogues ( 5a – 5t ) with ester functionality was carried out via Cu(I) catalyzed click reaction between prop‐2‐yn‐1‐yl benzoates and benzyl 2‐azidoacetates. The structure of synthesized triazoles were explicated by various spectral techniques like FT‐IR, 1H NMR, 13C NMR, and high‐resolution mass spectrometry and evaluated for in vitro antimicrobial potential against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Candida albicans, and Aspergillus niger. Most of synthesized triazole derivatives exhibited average to excellent activity against tested microbial strains.  相似文献   

16.
Some new (3,5‐aryl/methyl‐1H‐pyrazol‐1‐yl)‐(5‐arylamino‐2H‐1,2,3‐triazol‐4‐yl)methanones were synthesized and characterized by 1HNMR, 13C NMR, MS, IR spectra data and elemental analyses or high resolution mass spectra (HRMS). During the procedure, Dimroth rearrangement was used in this synthesis.  相似文献   

17.
The reaction between ethyl 2‐chloro‐3‐(phenylamino)but‐2‐enoate ( 5 ) and aniline gave 4‐methyl‐3‐(phenylamino)quinolin‐2(1H)‐one ( 6 ) and not, as reported earlier in the literature, the isomeric 2‐methyl‐3‐(phenylamino)quinolin‐4(1H)‐one ( 1 ). The latter could be prepared by an alternative procedure. The structures of both isomers were established by extensive NMR spectroscopy including 1D‐NOE, 2D‐HSQC, and HMBC experiments. Consequently, the reinvestigation of the title reaction revealed an unexpected simple access to novel 4‐alkyl‐substituted 3‐(arylamino)quinolin‐2(1H)‐ones.  相似文献   

18.
The synthesis of 3‐[5‐(4‐chlorophenyl)‐1‐(4‐methoxyphenyl)‐1H‐pyrazol‐3‐yl]propionic acid, C19H17ClN2O3, (I), and its corresponding methyl ester, methyl 3‐[5‐(4‐chlorophenyl)‐1‐(4‐methoxyphenyl)‐1H‐pyrazol‐3‐yl]propionate, C20H19ClN2O3, (II), is regiospecific. However, correct identification of the regioisomer formed by spectroscopic techniques is not trivial and single‐crystal X‐ray analysis provided the only means of unambiguous structure determination. Compound (I) crystallizes with Z′ = 2. The propionic acid groups of the two crystallographically unique molecules form a hydrogen‐bonded dimer, as is typical of carboxylic acid groups in the solid state. Conformational differences between the methoxybenzene and pyrazole rings give rise to two unique molecules. The structure of (II) features just one molecule in the asymmetric unit and the crystal packing makes greater use than (I) of weak C—H...A interactions, despite the lack of any functional groups for classical hydrogen bonding.  相似文献   

19.
The previously unknown title compound, tetra‐μ‐ace­tato‐1:2κ2O;1:2κ2O:O′;­2:3κ2O;­2:3κ2O:O′‐di­aqua‐1κO,3κO‐bis­(μ‐2‐{[N‐ethyl‐N‐(2‐hy­droxy‐5‐methylbenzyl)­am­ino]­methyl}‐1‐methyl‐1H‐benz­imid­az­ole)‐1κ3N3,N,O:2κO;3κ3N3,N,O:2κO‐tri­nickel(II) tetra­hy­drate, [Ni3(C18H22N3O)2(C2H3O2)4(H2O)2]·­4H2O, (I), is a centrosymmetric linear trinuclear nickel(II) complex, where the Ni atoms are in an octahedral coordination and the ligand heteroatoms act so as to model amino acid residues.  相似文献   

20.
Eight new 2‐methyl‐4(3H)‐quinazolinones (8a‐8d, 9c, 9d, 10c, 10d) with one or two chlorine atoms in the benzene ring and a 5‐methyl‐1,3‐thiazol‐2‐yl, 4‐methyl‐1,3‐thiazol‐2‐yl, and 5‐ethyl‐1,3,4‐thiadiazol‐2‐yl substituent in position 3 of the heterocyclic ring were synthesized and characterized. The two step procedure (Scheme 1) utilizes chlorosubstituted anthranilic acids (3a‐3d) and acetic anhydride as the starting materials, with the respective chlorosubstituted 2‐methyl‐4H‐3,1‐benzoxazin‐4‐ones (4a‐4d) as the intermediates. The quinazoline derivatives were characterized by their melting points, elemental analyses and the mass, ultraviolet, infrared, and 1H and 13C nmr spectra. The new compounds are expected to be biologically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号