首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method is described for the simultaneous determination of silodosin (SLD) and its active metabolite silodosin β‐d ‐glucuronide (KMD‐3213G) in human plasma. Liquid–liquid extraction of plasma samples was carried out with ethyl acetate and methyl tert‐butyl ether solvent mixture using deuterated analogs as internal standards. The extraction recoveries of SLD and KMD‐3213G were in the ranges 90.8–93.4 and 87.6–89.9%, respectively. The extracts were analyzed on a Symmetry C18 (50 × 4.6 mm, 5 μm) column under gradient conditions using 10 mm ammonium formate in water and methanol–acetonitrile (40:60, v/v), within 6.0 min. For MS/MS measurements, ionization of the analytes was carried out in the positive ionization mode and the transitions monitored were m/z 496.1 → 261.2 for SLD and m/z 670.2 → 494.1 for KMD‐3213G. The method showed good linearity, accuracy, precision and stability in the range 0.10–80.0 ng/mL for SLD and KMD‐3213G. The IS‐normalized matrix factors obtained were highly consistent, ranging from 0.962 to 1.023 for both analytes. The method was used to support a bioequivalence study of SLD and its metabolite in healthy volunteers after oral administration of 8 mg silodosin capsules.  相似文献   

2.
Lizhong decoction (LZD), a classic formula, has been used to treat ulcerative colitis (UC) for thousands of years in clinical practice. However, the pharmacokinetic characteristics of its major bioactive components in rats under different physiological and pathological states are not clear. Thus, in this study, a rapid and sensitive analytical method, ultra‐performance liquid chromatography coupled with mass spectrometry (UPLC–MS/MS) method, was developed and applied to simultaneously determine glycyrrhizic acid, liquiritin, isoliquiritin, glycyrrhizin, isoliquiritigenin, 6‐gingerol, ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Re in normal and UC rats after oral administration of LZD extract. A Waters BEH C18 UPLC column was used for chromatographic separation, while acetonitrile and 0.1% formic acid were selected as mobile phase. The linearity of nine analytes was >0.9920. Inter‐ and intra‐day accuracy was ≤ 11.4% and precision was from 1.1 to 12.7%. Additionally, stable and suitable extraction recoveries were also obtained. The established method was validated and found to be specific, accurate and precise for nine analytes. Furthermore, it was successfully applied to the pharmacokinetic investigation of nine major components after oral administration of LZD extracts to normal and model rats, respectively. The results showed that the pharmacokinetic parameters (Cmax, Tmax, AUC0–t, AUC0–∞) in the plasma of UC rats were significantly different from those of normal rats, which could provide a reference for the clinical application of LZD.  相似文献   

3.
A fast, sensitive, and efficient ultra‐fast LC–ESI‐MS/MS method was developed for the simultaneous quantitation of six highly toxic Aconitum alkaloids, that is, aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, in rat plasma after oral administration of crude ethanol extracts from Aconiti kusnezoffii radix by ultrasonic extraction, reflux extraction for 1 h, and reflux extraction for 3 h, respectively. The separation of six Aconitum alkaloids and aminopyrine (internal standard) was performed on an InertSustain® C18 column, and the quantification of the analytes was performed on a 4000Q ultra‐fast LC–MS/MS system with turbo ion spray source in the positive ion and multiple‐reaction monitoring mode. Absolute recoveries ranged within 65.06–85.1% for plasma samples. The intra‐ and interday precision and accuracy of analytes were satisfactory. The methods were validated with sensitivity reaching the lower LOQ for aconitine, mesaconitine, hypaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, which were 0.025, 0.025, 0.050, 0.025, 0.025, and 0.100 ng/mL, respectively. The method was successfully applied to a pharmacokinetic study of six Aconitum alkaloids in rat plasma after oral administration of crude ethanol extracts from the raw root of Aconitum kusnezoffii Reichb. by three different extraction processes.  相似文献   

4.
This report describes the development and validation of an LC‐MS/MS method for the quantitative determination of glyburide (GLB), its five metabolites (M1, M2a, M2b, M3 and M4) and metformin (MET) in plasma and urine of pregnant patients under treatment with a combination of the two medications. The extraction recovery of the analytes from plasma samples was 87–99%, and that from urine samples was 85–95%. The differences in retention times among the analytes and the wide range of the concentrations of the medications and their metabolites in plasma and urine patient samples required the development of three LC methods. The lower limit of quantitation (LLOQ) of the analytes in plasma samples was as follows: GLB, 1.02 ng/mL; its five metabolites, 0.100–0.113 ng/mL; and MET, 4.95 ng/mL. The LLOQ in urine samples was 0.0594 ng/mL for GLB, 0.984–1.02 ng/mL for its five metabolites and 30.0 µg/mL for MET. The relative deviation of this method was <14% for intra‐day and inter‐day assays in plasma and urine samples, and the accuracy was 86–114% in plasma, and 94–105% in urine. The method described in this report was successfully utilized for determining the concentrations of the two medications in patient plasma and urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A rapid and sensitive liquid chromatography tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous determination of two baccharane glycosides (hosenkoside A and hosenkoside K) of total saponins of Semen Impatientis in rat plasma using mogroside V as the internal standard (IS). The analytes were separated using a C18 RP Agilent XDB column (1.8 μm, 50 × 2.1 mm i.d.) and detection of the compounds was done using a TSQ Quantum triple quadrupole mass spectrometer coupled with a negative electrospray ionization source under selection reaction monitoring mode. According to the US Food and Drug Administration guidelines, the established method was fully validated and the results were proved within acceptable limits. The lower limits of quantification of both analytes were 5 ng/mL. The validated method was successfully applied to a pharmacokinetic study of orally administered the total saponins of Semen Impatientis in rats.  相似文献   

6.
Extracts from acacia, chestnut, cherry, mulberry, and oak wood, used in making barrels for aging wine and spirits were studied by GC/MS positive ion chemical ionization (PICI). Wood chips were extracted by a 50% water/ethanol solution and a tartrate buffer pH 3.2-12% ethanol (model wine) solution. The principal compounds identified in extracts were guaiacol-containing aldehydes and alcohols, such as benzaldehyde and derivatives, vanillin and syringaldehyde, cinnamaldehyde and coniferaldehyde, eugenol and methoxyeugenol, guaiacol and methoxyguaiacol derivatives. PICI using methane as reagent gas produced a high yield of the protonated molecular ion of volatile phenols, compound identification was confirmed by collision-induced-dissociation (CID) experiments on [M + H](+) species. MS/MS fragmentation patterns were studied with standard compounds: guaiacol-containing molecules were characterized by neutral methyl and methanol losses, benzaldehyde derivatives by CO loss. Acacia wood extracts contained significant syringaldehyde and anisaldehyde, but no eugenol and methoxyeugenol. Significant syringaldehyde, eugenol and methoxyeugenol, and high vanillin were found in chestnut and oak wood extracts; low presence of volatile benzene compounds was found in mulberry wood extracts. Cherry wood extracts were characterized by the presence of several benzaldehyde derivatives and high trimethoxyphenol.  相似文献   

7.
A method using reversed phase high performance liquid chromatography/electrospray ionization-mass spectrometry (RP-LC/ESI-MS) has been developed to confirm the identity of dansylated derivatives of cysteine (C) and glutathione (GSH), and their respective dimers, cystine (CSSC) and glutathione disulfide (GSSG). Cysteine, GSH, CSSC and GSSG are present at low concentrations in rainbow trout (Oncorhynchus mykiss) liver cells. Initially, hepatic cells were sampled from a suspension culture and disrupted upon addition of 10% perchloric acid. The reduced thiols present in the cell extracts were acetylated to prevent dimerization and then the C and GSH species were derivatized with dansyl chloride for fluorescence detection. An LC system using a weak anion exchange column (AE) with fluorescence detection (FLD) was used for sensitive routine analysis; however, it produced peaks of unknown origin in addition to the expected analytes. Analytes were then separated on a C18 RP-LC system using a water/acetonitrile gradient with 0.2% formic acid, and detected using LC/ESI-MS at 3.5 KV which produced an intense ion with a minimum limit of detection of less than 0.5 pmole injected (>10:1 signal-to-noise (S/N). Subsequently, fractions of effluent from the AE-LC/FLD system were analyzed by LC/ESI-MS to confirm the presence of the target analytes in routine cell extracts. Monodansylated GSSG was identified as a product that could possibly affect the quantification of GSH and GSSG.  相似文献   

8.
GMDP (glucosoaminyl-muramyl-dipeptide), a synthetic analog of the peptidoglycan fragment of the bacterial cell wall, is an active component of the immunomodulatory drug Licopid. But the pharmacokinetic parameters of GMDP in humans after oral administration have not been investigated yet. The present study aimed at developing and validating a sensitive LC–MS/MS method for the analysis of GMDP in human plasma. The sample was prepared by solid-phase extraction using Strata-X 33 μm polymeric reversed-phase 60 mg/3 mL cartridges Phenomenex (Torrance, CA, USA). The analytes were separated using an Acquity UPLC BEN C18 column, 1.7 μm 2.1 × 50 mm Waters (Milford, USA). GMDP and internal standard growth hormone releasing peptide-2 (pralmorelin) were ionized in positive electrospray ionization mode and detected in multiple reaction monitoring mode. The developed method was validated within a linear range of 50–3000 pg/mL for GMDP. Accuracy for all analytes, given as the deviation between the nominal and measured concentration and assay variability , ranged from 1.61 to 3.02% and from 0.89 to 1.79%, respectively, for both within- and between-run variabilities. The developed and validated HPLC–MS/MS method was successfully used to obtain the plasma pharmacokinetic profiles of GMDP distribution in human plasma.  相似文献   

9.
This study describes a method for the simultaneous determination of 12 synthetic cannabinoids by MEKC–MS/MS using a volatile surfactant (ammonium perfluorooctanoate) as a constituent of the micellar pseudostationary phase. Although most synthetic cannabinoids comigrated by a CZE method, sufficient separation could be achieved by the proposed method. The best separation was made possible by 50 mM ammonium perfluorooctanoate in 20% v/v acetonitrile/water (apparent pH* 9.0) as the BGE, followed by MS detection using a sheath liquid composed of 5 mM ammonium formate in 50% v/v methanol/water mixed hydro‐organic solvent. The standard calibration curve for all analytes showed good linearity (r > 0.99). Satisfactory recoveries, ranging from 89.5 to 101.7%, were obtained. The LODs were 6.5–76.5 μg/g for the target analytes. This method appears to be a useful tool for the identification of synthetic cannabinoids in illegal herbal incense blends.  相似文献   

10.
For analysis of hair samples derived from a pilot study (‘in vivo’ contamination of hair by sidestream marijuana smoke), an LC‐MS/MS method was developed and validated for the simultaneous quantification of Δ9‐tetrahydrocannabinolic acid A (THCA‐A), Δ9‐tetrahydrocannabinol (THC), cannabinol (CBN) and cannabidiol (CBD). Hair samples were extracted in methanol for 4 h under occasional shaking at room temperature, after adding THC‐D3, CBN‐D3, CBD‐D3 and THCA‐A‐D3 as an in‐house synthesized internal standard. The analytes were separated by gradient elution on a Luna C18 column using 0.1% HCOOH and ACN + 0.1% HCOOH. Data acquisition was performed on a QTrap 4000 in electrospray ionization‐multi reaction monitoring mode. Validation was carried out according to the guidelines of the German Society of Toxicological and Forensic Chemistry (GTFCh). Limit of detection and lower limit of quantification were 2.5 pg/mg for THCA‐A and 20 pg/mg for THC, CBN and CBD. A linear calibration model was applicable for all analytes over a range of 2.5 pg/mg or 20 pg/mg to 1000 pg/mg, using a weighting factor 1/x. Selectivity was shown for 12 blank hair samples from different sources. Accuracy and precision data were within the required limits for all analytes (bias between ?0.2% and 6.4%, RSD between 3.7% and 11.5%). The dried hair extracts were stable over a time period of one to five days in the dark at room temperature. Processed sample stability (maximum decrease of analyte peak area below 25%) was considerably enhanced by adding 0.25% lecithin (w/v) in ACN + 0.1% HCOOH for reconstitution. Extraction efficiency for CBD was generally very low using methanol extraction. Hence, for effective extraction of CBD alkaline hydrolysis is recommended. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
An effective analytical protocol using graphene‐based SPE coupled with HPLC‐MS/MS for determination of chloramphenicol (CAP) in aquatic products has been developed. In the present work, graphene was evaluated as SPE sorbents for the analytes enrichment and clean up. The target analytes were quantified by a triple‐quadrupole linear ion trap MS in multiple‐reaction monitoring mode. In addition, the proposed method was validated according to Commission Decision 2002/657/EC. The calibration curve was linear over the range of 0.5–100 ng/mL. The mean values of RSD of intra‐ and interday ranging from 1.48 to 4.29% and from 3.25 to 7.42% were obtained, respectively. In the three fortified levels, the recoveries of CAP ranging from 92.3 to 103.4% with RSDs ≤ 5.58% were obtained. The proposed method has been successfully applied to the analysis of CAP in several aquatic product samples, indicating that graphene was a potential SPE sorbent for the enrichment of trace residues in food samples.  相似文献   

12.
Radix Scutellariae (RS) is a herbal medicine with various pharmacological activities to treat inflammation, respiratory and gastrointestinal infections, etc. In this study, a rapid, sensitive and selective UPLC‐ESI‐MS/MS method was developed for simultaneous determination of 10 flavonoids – scutellarin, scutellarein, chrysin, wogonin, baicalein, apigenin, wogonoside, oroxylin A‐7‐O‐glucuronide, oroxylin A and baicalin – from RS aqueous extracts in rat plasma with propyl paraben as internal standard (IS). Chromatographic separation was achieved on a C18 column using gradient elution with the mobile phase consisting of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min. The detection was performed in multiple reaction monitoring mode using electrospray ionization in negative mode. The validated method showed good linearity over a wide concentration range (r >0.9935). The intra‐ and interday assay variabilities were <9.5% and <12.4% for all analytes, respectively. The extraction recovery ranged from 71.2 to 89.7% for each analyte and IS. This method was successfully applied to pharmacokinetic comparision after oral administration of crude and wine‐processed RS aqueous extracts. There were significant differences in some pharmacokinetic parameters of most analytes between crude and wine‐processed RS. This suggested that wine‐processing exerted effects absorption of most flavonoids. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Lee J  Ryoo SR  Kim SK  Ahn JH  Min DH  Yeo WS 《Analytical sciences》2011,27(11):1127-1131
We report on a novel method for the quantitation of proteins specifically bound on a ligand-presenting biochip by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). The bound protein was digested by trypsin, and the resulting peptide fragments were analyzed by MALDI-TOF MS in the presence of an isotope-labeled internal standard (IS). The IS has the same sequence as a reference peptide (RP) of the target protein digest, but a different molecular weight. The absolute amount of the specifically bound protein on a biochip is then quantitated by comparison of mass intensities between the RP and the IS. Because they have the same molecular milieu, the mass intensities of these two analytes represent the real amounts of analytes on the chip. As a model system, we tested glutathione s-transferase (GST) and a GST-fusion protein, which were captured on glutathione-presenting biochips. We observed that the glutathione densities on biochips showed a good correlation with the absolute quantity of the proteins. We believe that our method will provide an alternative to currently existing tools for the absolute quantitation of surface-bound proteins.  相似文献   

14.
In this study, a rapid and sensitive analytical method for the determination of methyl‐, ethyl‐, propyl‐, and butyl esters of para‐hydroxy benzoic acid (parabens) in personal care products was developed and fully validated. Test portions were extracted with methanol followed by vortexing, sonication, centrifugation, and filtration without derivatization. The four parabens were quantified by GC‐MS/MS in the electron ionization mode. Four corresponding isotopically labeled parabens were selected as internal standards, which were added at the beginning of the sample preparation and used to correct for recovery and matrix effects. Sensitivity, extraction efficiency, and recovery of the respective analytes were evaluated. The coefficients of determination (r2) were all greater than 0.995 for the four parabens investigated. The recoveries ranged from 97 to 107% at three spiked levels and a one‐time (single) extraction efficiency greater than 97% was obtained. This method has been applied to screen 26 personal care products. This is the first time that a unique GC‐MS/MS method with dynamic selected reaction monitoring and confirmation of analytes has been used to determine these parabens in cosmetic personal care products.  相似文献   

15.
The prerequisites for forensic confirmatory analysis by LC/MS/MS with respect to European Union guidelines are chromatographic separation, a minimum number of two MS/MS transitions to obtain the required identification points and predefined thresholds for the variability of the relative intensities of the MS/MS transitions (MRM transitions) in samples and reference standards. In the present study, a fast, sensitive and robust method to quantify tramadol, chlorpheniramine, dextromethorphan and their major metabolites, O‐desmethyltramadol, dsmethyl‐chlorpheniramine and dextrophan, respectively, in human plasma using ibuprofen as internal standard (IS) is described. The analytes and the IS were extracted from plasma by a liquid–liquid extraction method using ethyl acetate–diethyl‐ether (1:1). Extracted samples were analyzed by ultra‐high‐performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC‐ESI‐MS/MS). Chromatographic separation was performed by pumping the mobile phase containing acetonitrile, water and formic acid (89.2:11.7:0.1) for 2.0 min at a flow rate of 0.25 μL/min into a Hypersil‐Gold C18 column, 20 × 2.0 mm (1.9 µm) from Thermoscientific, New York, USA. The calibration curve was linear for the six analytes. The intraday precision (RSD) and accuracy (RE) of the method were 3–9.8 and ?1.7–4.5%, respectively. The analytical procedure herein described was used to assess the pharmacokinetics of the analytes in 24 healthy volunteers after a single oral dose containing 50 mg of tramadol hydrochloride, 3 mg chlorpheniramine maleate and 15 mg of dextromethorphan hydrobromide. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this work is to establish a method for the simultaneous determination of eight penicillins in milk samples by LC‐UV, LC‐MS and LC‐MS/MS. The procedure involves a step for clean‐up and to preconcentrate the analytes by SPE and a subsequent chromatographic analysis. LC‐UV, LC‐MS and LC‐MS/MS have been used for the simultaneous quantification of penicillins in milk. The proposed methods have been validated according to the EU guideline and present LOQ below the maximum limits of residues (MRLs) established by the European Union for penicillins in milk. The developed methods were applied to different milk samples obtained from cows medicated with penicillins.  相似文献   

17.
Development of a feasible method for studying the competitive interaction between a pair of antagonists is essential for understanding the antagonism of trace metals in biological systems. Herein, we report the application of CE on‐line coupled with ICP mass spectroscopy (CE‐ICP‐MS) to investigate the competitive binding of Zn2+ against Cd2+ for glutathione (GSH), which is related to the detoxification of Cd2+ in biological system, and introduce a method to evaluate the kinetics and thermodynamics for the competitive binding of Zn2+ against Cd2+ for GSH. The CE‐ICP‐MS hybrid technique allows easy and sensitive probing of the competitive binding of Zn2+ against Cd2+ for GSH and quantitative determination of the important thermodynamic and kinetic parameters of the competitive binding of Zn2+ against Cd2+ for GSH. Owing to the high sensitivity and element selectivity with multi‐elements detection capacity of ICP‐MS, we detailed the evaluation of the kinetics and thermodynamics describing the competition of Zn2+ against Cd2+ for GSH from the systematic data obtained by CE‐ICP‐MS. The competitive binding of Zn2+ against Cd2+ for GSH was demonstrated exothermic and thermodynamically favorable (ΔG=?7.2 kJ/mol) and driven entirely by a large favorable enthalpy decrease (ΔH=?15.1 kJ/mol) but with an unfavorable entropy decrease (ΔS=?25.6 J/mol/K). The kinetic data were fit to a second‐order equation with the reaction rate constant (k) of (2.18±0.10)×102 L/(mol·s) under the simulated physiological condition.  相似文献   

18.
An ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the simultaneous determination of carvedilol and its pharmacologically active metabolite 4′‐hydroxyphenyl carvedilol in human plasma using their deuterated internal standards (IS). Samples were prepared by solid‐phase extraction using 100 μL human plasma. Chromatographic separation of analytes was achieved on UPLC C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile‐4.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (78:22, v/v) as the mobile phase. The multiple reaction monitoring transitions for both the analytes and IS were monitored in the positive electrospray ionization mode. The method was validated over a concentration range of 0.05–50 ng/mL for carvedilol and 0.01‐10 ng/mL for 4′‐hydroxyphenyl carvedilol. Intra‐ and inter‐batch precision (% CV) and accuracy for the analytes varied from 0.74 to 3.88 and 96.4 to 103.3% respectively. Matrix effect was assessed by post‐column analyte infusion and by calculation of precision values (coefficient of variation) in the measurement of the slope of calibration curves from eight plasma batches. The assay recovery was within 94–99% for both the analytes and IS. The method was successfully applied to support a bioequivalence study of 12.5 mg carvedilol tablets in 34 healthy subjects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A simple, high‐throughput and highly sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method has been developed for the simultaneous estimation of rosuvastatin and free ezetimibe. Liquid–liquid extraction was carried out using methyl‐tert butyl ether after prior acidification from 300 μL human plasma. The recovery for both the analytes and their deuterated internal standards (ISs) ranged from 95.7 to 99.8%. Rosuvastatin and ezetimibe were separated on Symmetry C18 column using acetonitrile and ammonium formate buffer, pH 3.5 (30:70, v/v) as the mobile phase. The analytes were well resolved with a resolution factor of 3.8. Detection and quantitation were performed under multiple reaction monitoring using ESI(+) for rosuvastatin (m/z 482.0 → 258.1) and ESI(−) for ezetimibe (m/z 407.9 → 271.1). A linear response function was established in the concentration ranges of 0.05–50.0 ng/mL and 0.01–10.0 ng/mL for rosuvastatin and ezetimibe, respectively, with correlation coefficient, r2 ≥ 0.9991. The IS‐normalized matrix factors for the analytes ranged from 0.963 to 1.023. The developed method was successfully used to compare the pharmacokinetics of a fixed‐dose combination tablet of rosuvastatin‐ezetimibe and co‐administered rosuvastatin and ezetimibe as separate tablets to 24 healthy subjects. The reliability of the assay was also assessed by reanalysis of 115 subject samples.  相似文献   

20.
A fast, sensitive and reliable ultra fast liquid chromatography‐tandem mass spectrometry (UFLC‐MS/MS) method has been developed and validated for simultaneous quantitation of polygalaxanthone III (POL), ginsenoside Rb1 (GRb1), ginsenoside Rd (GRd), ginsenoside Re (GRe), ginsenoside Rg1 (GRg1) and tumulosic acid (TUM) in rat plasma after oral administration of Kai‐Xin‐San, which plays an important role for the treatment of Alzheimer's disease (AD). The plasma samples were extracted by liquid–liquid extraction using ethyl acetate–isopropanol (1:1, v/v) with salidrdoside as internal standard (IS). Good chromatographic separation was achieved using gradient elution with the mobile phase consisting of methanol and 0.01% acetic acid in water. The tandem mass spectrometric detection was performed in multiple reaction monitoring mode on 4000Q UFLC‐MS/MS system with turbo ion spray source in a negative and positive switching ionization mode. The lower limits of quantification were 0.2–1.5 ng/ml for all the analytes. Both intra‐day and inter‐day precision and accuracy of analytes were well within acceptance criteria (±15%). The mean absolute extraction recoveries of analytes and IS from rat plasma were all more than 60.0%. The validated method has been successfully applied to comparing pharmacokinetic profiles of analytes in normal and AD rat plasma. The results indicated that no significant differences in pharmacokinetic parameters of GRe, GRg1 and TUM were observed between the two groups, while the absorption of POL and GRd in AD group were significantly higher than those in normal group; moreover, the GRb1 absorbed more rapidly in model group. The different characters of pharmacokinetics might be caused by pharmacological effects of the analytes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号