首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Space-time means and solutions to a class of nonlinear parabolic equations   总被引:2,自引:0,他引:2  
Cauchy problem and initial boundary value problem for nonlinear parabolic equation inCB([0,T):L p ) orL q (0,T; L p ) type space are considered. Similar to wave equation and dispersive wave equation, the space-time means for linear parabolic equation are shown and a series of nonlinear estimates for some nonlinear functions are obtained by space-time means. By Banach fixed point principle and usual iterative technique a local mild solution of Cauchy problem or IBV problem is constructed for a class of nonlinear parabolic equations inCB([0,T);L p orL q (0,T; L p ) with ϕ(x)∈L r . In critical nonlinear case it is also proved thatT can be taken as infinity provided that ||ϕ(x)||r is sufficiently small, where (p,q,r) is an admissible triple. Project supported by the National Natural Science Foundation of China (Grant No. 19601005).  相似文献   

2.
We prove existence and uniqueness of strong solutions to a quasilinear parabolic‐elliptic system modelling an ionic exchanger. This chemical system consists of three phases connected with nonlinear boundary conditions. The most interesting difficulty of our problem manifests in the nonlinear transmission condition, as almost all quantities are non‐linearly involved in this boundary equation. Our approach is based on the contraction mapping principle, where maximal Lp‐regularity of the associated linear problem is used to obtain a fixed point equation of the starting problem. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this work, we discuss the coupled modified nonlinear Schrödinger (CMNLS) equation, which describe the pulse propagation in the picosecond or femtosecond regime of the birefringent optical fibers. By use of the Fokas approach, the initial‐boundary value problem for the CMNLS equation related to a 3×3 matrix Lax pair on the half‐line is to be analyzed. Assuming that the solution {u(x,t),v(x,t)} of CMNLS equation exists, we will prove that it can be expressed in terms of the unique solution of a 3×3 matrix Riemann‐Hilbert problem formulated in the plane of the complex spectral parameter λ. Moreover, we also get that some spectral functions s(λ) and S(λ) are not independent of each other but meet a global relationship.  相似文献   

4.
The aim of this paper is to study the Cauchy problem of determining a solution of nonlinear elliptic equations with random discrete data. A study showing that this problem is severely ill posed in the sense of Hadamard, ie, the solution does not depend continuously on the initial data. It is therefore necessary to regularize the in‐stable solution of the problem. First, we use the trigonometric of nonparametric regression associated with the truncation method in order to offer the regularized solution. Then, under some presumption on the true solution, we give errors estimates and convergence rate in L2‐norm. A numerical example is also constructed to illustrate the main results.  相似文献   

5.
In this article, the local well‐posedness of Cauchy's problem is explored for a system of quadratic nonlinear Schrödinger equations in the space Lp( R n). In a special case of mass resonant 2 × 2 system, it is well known that this problem is well posed in Hs(s≥0) and ill posed in Hs(s < 0) in two‐space dimensions. By translation on a linear semigroup, we show that the general system becomes locally well posed in Lp( R 2) for 1 < p < 2, for which p can arbitrarily be close to the scaling limit pc=1. In one‐dimensional case, we show that the problem is locally well posed in L1( R ); moreover, it has a measure valued solution if the initial data are a Dirac function. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper we establish some results regarding the existence of solution on L1 spaces to a nonlinear boundary value problem originally proposed by Lebowitz and Rubinow (J. Math. Biol. 1974; 1 :17–36) to model an age‐structured proliferating cell population. Our approach, based on topological methods, uses essentially the specific properties of weakly compact sets on L1 spaces. Our results provide positive answers to the questions posed in Jeribi (Nonlinear Anal. Real World Appl. 2002; 3 :85–105). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
We consider the nonlinear eigenvalue problem M(λ)x = 0, where M(λ) is a large parameter‐dependent matrix. In several applications, M(λ) has a structure where the higher‐order terms of its Taylor expansion have a particular low‐rank structure. We propose a new Arnoldi‐based algorithm that can exploit this structure. More precisely, the proposed algorithm is equivalent to Arnoldi's method applied to an operator whose reciprocal eigenvalues are solutions to the nonlinear eigenvalue problem. The iterates in the algorithm are functions represented in a particular structured vector‐valued polynomial basis similar to the construction in the infinite Arnoldi method [Jarlebring, Michiels, and Meerbergen, Numer. Math., 122 (2012), pp. 169–195]. In this paper, the low‐rank structure is exploited by applying an additional operator and by using a more compact representation of the functions. This reduces the computational cost associated with orthogonalization, as well as the required memory resources. The structure exploitation also provides a natural way in carrying out implicit restarting and locking without the need to impose structure in every restart. The efficiency and properties of the algorithm are illustrated with two large‐scale problems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A linearized three‐level difference scheme on nonuniform meshes is derived by the method of the reduction of order for the Neumann boundary value problem of a nonlinear parabolic system. It is proved that the difference scheme is uniquely solvable and second‐order convergent in L‐norm. A numerical example is given. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 230–247, 2004  相似文献   

9.
The purpose of this paper is to show existence of a solution of the Dirichlet problem for a nonlinear generalized Darcy–Forchheimer–Brinkman system in a bounded Lipschitz domain in , with small boundary datum in L2‐based Sobolev spaces. A useful intermediary result is the well‐posedness of the Poisson problem for a generalized Brinkman system in a bounded Lipschitz domain in , with Dirichlet boundary condition and data in L2‐based Sobolev spaces. We obtain this well‐posedness result by showing that the matrix type operator associated with the Poisson problem is an isomorphism. Then, we combine the well‐posedness result from the linear case with a fixed point theorem in order to show the existence of a solution of the Dirichlet problem for the nonlinear generalized Darcy–Forchheimer–Brinkman system. Some applications are also included. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The minimax formula for linear eigenvalues of a linear operator is used to estimate the parameter values (λ) for which the self-adjoint operator L(λ) on Hilbert space to itself fails to have a bounded inverse. Such λ compose the “nonlinear spectrum” of L. The parameter spaces include regions in real or complex n-space. The localization theorems are used to demonstrate certain necessary conditions for stability of linear integro-partial-differential delay equations.  相似文献   

11.
In this article, we consider the finite volume element method for the second‐order nonlinear elliptic problem and obtain the H1 and W1, superconvergence estimates between the solution of the finite volume element method and that of the finite element method, which reveal that the finite volume element method is in close relationship with the finite element method. With these superconvergence estimates, we establish the Lp and W1,p (2 < p ≤ ∞) error estimates for the finite volume element method for the second‐order nonlinear elliptic problem. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

12.
We consider a nonlinear Neumann logistic equation driven by the p-Laplacian with a general Carathéodory superdiffusive reaction. We are looking for positive solutions of such problems. Using minimax methods from critical point theory together with suitable truncation techniques, we show that the equation exhibits a bifurcation phenomenon with respect to the parameter λ > 0. Namely, we show that there is a λ* > 0 such that for λ < λ*, the problem has no positive solution; for λ = λ*, it has at least one positive solution; and for λ > λ*, it has at least two positive solutions.  相似文献   

13.
A linearized three‐level difference scheme on nonuniform meshes is derived by the method of the reduction of order for the Dirichlet boundary value problem of the nonlinear parabolic systems. It is proved that the difference scheme is uniquely solvable and second order convergent in Lnorm. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 638–652, 2003  相似文献   

14.
Associated with an n×n matrix polynomial of degree , are the eigenvalue problem P(λ)x=0 and the linear system problem P(ω)x=b, where in the latter case x is to be computed for many values of the parameter ω. Both problems can be solved by conversion to an equivalent problem L(λ)z=0 or L(ω)z=c that is linear in the parameter λ or ω. This linearization process has received much attention in recent years for the eigenvalue problem, but it is less well understood for the linear system problem. We develop a framework in which more general versions of both problems can be analyzed, based on one-sided factorizations connecting a general nonlinear matrix function N(λ) to a simpler function M(λ), typically a polynomial of degree 1 or 2. Our analysis relates the solutions of the original and lower degree problems and in the linear system case indicates how to choose the right-hand side c and recover the solution x from z. For the eigenvalue problem this framework includes many special cases studied in the literature, including the vector spaces of pencils L1(P) and L2(P) recently introduced by Mackey, Mackey, Mehl, and Mehrmann and a class of rational problems. We use the framework to investigate the conditioning and stability of the parametrized linear system P(ω)x=b and thereby study the effect of scaling, both of the original polynomial and of the pencil L. Our results identify situations in which scaling can potentially greatly improve the conditioning and stability and our numerical results show that dramatic improvements can be achieved in practice.  相似文献   

15.
This paper deals with a nonlinear inverse problem to determine the Neumann condition on the boundary ΓL??Ω, from measurements in the domain Ω. This condition is characterised by the width of ΓL and by the constant value of the flux on this boundary. The direct problem is the Laplacian problem corresponding to flow modelling in a confined aquifer and ΓL corresponds to the contact with a fault. Some properties of associated direct application are given and in particular, we show how one can compute its gradient by some explicit formulas. To cite this article: D.-G. Calugaru, J.-M. Crolet, C. R. Acad. Sci. Paris, Ser. I 336 (2003).  相似文献   

16.
In this paper, we find the approximate solution of a second order nonlinear partial differential equation on a simple connected region inR 2. We transfer this problem to a new problem of second order nonlinear partial differential equation on a rectangle. Then, we transformed the later one to an equivalent optimization problem. Then we consider the optimization problem as a distributed parameter system with artificial controls. Finally, by using the theory of measure, we obtain the approximate solution of the original problem. In this paper also the global error inL 1 is controlled.  相似文献   

17.
In this paper we consider the strictly hyperbolic equation uttλ2(t)b2(tu=0. The coefficient consists of an increasing function λ=λ(t) and a non‐constant periodic function b=b(t). We study the question for the influence of these parts on LpLq decay estimates for the solution of the Cauchy problem. A fairly wide class of equations will be described for which the influence of the oscillating part dominates. This implies, on the one hand, that there exist no LpLq decay estimates and, on the other hand, that the energy estimate from Gronwall's inequality is near to an optimal one. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
For decades considerable efforts have been exerted to resolve the inverse eigenvalue problem for non‐negative matrices. Yet fundamental issues such as the theory of existence and the practice of computation remain open. Recently, it has been proved that, given an arbitrary (n–1)‐tuple ?? = (λ2,…,λn) ∈ ?n–1 whose components are closed under complex conjugation, there exists a unique positive real number ?(??), called the minimal realizable spectral radius of ??, such that the set {λ1,…,λn} is precisely the spectrum of a certain n × n non‐negative matrix with λ1 as its spectral radius if and only if λ1 ? ?(??). Employing any existing necessary conditions as a mode of checking criteria, this paper proposes a simple bisection procedure to approximate the location of ?(??). As an immediate application, it offers a quick numerical way to check whether a given n‐tuple could be the spectrum of a certain non‐negative matrix. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we consider nonlinear inverse problems where the solution is assumed to have a sparse expansion with respect to a preassigned basis or frame. We develop a scheme which allows to minimize a Tikhonov functional where the usual quadratic regularization term is replaced by a one-homogeneous (typically weighted ℓ p ) penalty on the coefficients (or isometrically transformed coefficients) of such expansions. For (p < 2), the regularized solution will have a sparser expansion with respect to the basis or frame under consideration. The computation of the regularized solution amounts in our setting to a Landweber-fixed-point iteration with a projection applied in each fixed-point iteration step. The performance of the resulting numerical scheme is demonstrated by solving the nonlinear inverse single photon emission computerized tomography (SPECT) problem.  相似文献   

20.
This article addresses nonlinear wave equations with supercritical interior and boundary sources, and subject to interior and boundary damping. The presence of a nonlinear boundary source alone is known to pose a significant difficulty since the linear Neumann problem for the wave equation is not, in general, well‐posed in the finite‐energy space H1(Ω) × L2(?Ω) with boundary data in L2 due to the failure of the uniform Lopatinskii condition. Further challenges stem from the fact that both sources are non‐dissipative and are not locally Lipschitz operators from H1(Ω) into L2(Ω), or L2(?Ω). With some restrictions on the parameters in the model and with careful analysis involving the Nehari Manifold, we obtain global existence of a unique weak solution, and establish exponential and algebraic uniform decay rates of the finite energy (depending on the behavior of the dissipation terms). Moreover, we prove a blow up result for weak solutions with nonnegative initial energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号