首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A vanadium ion‐imprinted polymer was synthesized in the presence of V(V) and N‐benzoyl‐N‐phenyl hydroxyl amine using 4‐vinyl pyridine as the monomer, ethylene glycol dimethacrylate as the cross linker and 2,2’‐azobis(isobutyronitrile) as the initiator. The imprinted V(V) ions were completely removed by leaching the polymer with 5 mol/L nitric acid, and the polymer structure was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The ion‐imprinted polymer was used as the sorbent in the development of the solid‐phase extraction method for V(V) prior to its determination by electrothermal atomic absorption spectrometry. The maximum sorption capacity for V(V) ions was 26.7 mg/g at pH 4.0. Under the optimum conditions, for a sample volume of 150.0 mL, an enrichment factor of 289.0 and a detection limit of 6.4 ng/L were obtained. The developed method was successfully applied to the determination of vanadium in parsley, zucchini, black tea, rice, and water samples.  相似文献   

2.
A tailor‐made Cu(II) ion‐imprinted polymer based on large‐surface‐area graphene oxide sheets has been synthesized for the preconcentration and determination of trace copper from food samples by solid‐phase extraction. Attributed to the ultrahigh surface area and hydrophilicity of graphene oxide, the Cu(II) ion‐imprinted polymer prepared by the surface ion‐imprinting technique exhibited a high binding capacity and a fast adsorption rate under the optimized experimental conditions. In the static adsorption experiments, the maximum adsorption capacity of Cu(II) ion‐imprinted polymer is 109.38 mg/g at 25°C, which is much higher than that of the nonimprinted polymer (32.12 mg/g). Meanwhile, the adsorption is very rapid and equilibrium is reached after approximately 30 min. The adsorption mechanism is found to follow Langmuir adsorption model and the pseudo‐second‐order adsorption process. The Cu(II) ion‐imprinted polymer was used for extracting and detecting Cu(II) in food samples combined with graphite flame atomic adsorption spectrometry with high recoveries in the range of 97.6–103.3%. The relative standard deviation and limit of detection of the method were evaluated as 1.2% and 0.37 μg/L, respectively. The results showed that the novel absorbent can be utilized as an effective material for the selective enrichment and determination of Cu(II) from food samples.  相似文献   

3.
In this work, a molecular imprinted polymer (MIP) as a novel selective sorbent for extraction of 3,4-methylenedioxymethamphetamine (MDMA) from plasma samples was prepared. For selecting a more suitable monomer and polymerization solvent a methodology based on density functional theory calculations was developed. This computational design is based on the comparison of stabilization energies of the prepolymerization adducts between the template and different functional monomers. The effect of polymerization solvent was studied using of polarizable continuum model (PCM). The computational results revealed that the best suitable monomer and polymerization solvent for preparation of MIP is methacrylic acid (MAA) and chloroform, respectively. Also, another MIP with methacrylic acid (MAA) as monomer in acetonitrile was prepared to evaluate the validity of polarizable continuum model for selection of polymerization solvent. The performance of each polymer was evaluated by using Langmuir-Freundlich (LF) isotherm. As it is expected, the best results were obtained for the MIP which was prepared in chloroform. This MIP was used as a selective sorbent in solid-phase extraction coupled with high performance liquid chromatography-ultraviolet detector (MISPE-HPLC-UV) for rapid screening of MDMA in human plasma. For the proposed MISPE-HPLC-UV method, the linearity between responses (peak areas) and concentrations was found over the range of 3.6-11500 ng mL(-1) with a linear regression coefficient of 0.998. The limit of detection (LOD) and quantification (LOQ) in plasma were 1.0 and 3.3 ng mL(-1), respectively. The %RSD (n=5) data for five plasma samples containing 15, 25, 50, and 100 ng mL(-1) of MDMA were 1.02, 1.12, 2.05, 2.54, respectively.  相似文献   

4.
Cotinine, the main metabolite of nicotine in human body, is widely used as a biomarker for assessment of direct or passive exposure to tobacco smoke. A method for molecularly imprinted solid-phase extraction (MISPE) of cotinine from human urine has been investigated. The molecularly imprinted polymer (MIP) with good selectivity and affinity for cotinine was synthesized using cotinine as the template molecule, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with aqueous standards, by comparing recovery data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from the aqueous solutions resulted in more than 80% recovery. A range of linearity for cotinine between 0.05 and 5 μg mL−1 was obtained by loading 1 mL blank urine samples spiked with cotinine at different concentrations in acetate buffer of pH 9.0, and by using double basic washing and acidic elution. The intra-day coefficient of variation (CV) was below 7% and inter-day CV was below 10%. This investigation has provided a reliable MISPE–HPLC method for determination of cotinine in human urine from both active smokers and passive smokers. Figure  相似文献   

5.
The proposed L ‐histidine sensing system composed of a molecularly imprinted solid‐phase microextraction component combined with a molecularly imprinted polymer sensor was used to determine critical levels of test analyte in a complex matrix of highly diluted human blood serum without any non‐specific sorption and false‐positive contributions. The molecularly imprinted polymer was a zwitterionic polymer brush derived from the disodium salt of EDTA and chloranil, grafted to solid‐phase microextraction material. The hyphenated approach was able to detect L ‐histidine quantitatively with a limit of detection as low as 0.0435 ng/mL (RSD = 0.2%, S/N = 3).  相似文献   

6.
In this work, we report the first application of ion‐imprinted technology via precipitation polymerization for simple and practical determination of rubidium ions. The rubidium‐ion‐imprinted polymer nanoparticles were prepared using dibenzo‐21‐crown‐7 as a selective ligand, methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross linker, and 2,2′‐azobisisobutyronitrile as radical initiator. The resulting powder material was characterized using scanning electron microscopy, which showed colloidal nanoparticles of 100–200 nm in diameter and slightly irregular in shape. The maximum adsorption capacity of the ion imprinted particles was 63.36 μmol/g. The experimental conditions such as nature and concentration of eluent, pH, adsorption and desorption times, weight of the polymer material, aqueous phase and desorption agent volumes were also studied. Finally, selectivity of the prepared IIP particles toward rubidium ion was investigated in the presence of some foreign metal ions.  相似文献   

7.
This work reports the preparation of molecularly imprinted polymer particles for the selective extraction and determination of four benzophenones from aqueous media. The polymer was prepared by using 4‐vinylpridine as functional monomer, ethylene glycol dimethacrylate as cross‐linker, acetonitrile as porogenic solvent and 2,2’,4,4’‐tetrehydroxybenzophenone as template. Good specific adsorption capacity (Qmax = 27.90 μmol/g) for 2,2’,4,4’‐tetrehydroxybenzophenone was obtained in the sorption experiment and good class selectivity for 2,2’,4,4’‐tetrehydroxybenzophenone, 2,4‐dihydroxybenzophenone, 2,2’‐dihydroxy‐4‐methoxybenzophenone, 2,2’‐dehydroxy‐4,4’‐dimethoxybenzophenone was demonstrated by the chromatographic evaluation experiment. Factors affecting the extraction efficiency of the molecularly imprinted solid‐phase extraction procedure were investigated systematically. An accurate and sensitive analytical method based on the molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and diode array detection has been successfully developed for the simultaneous determination of four benzophenones from tap water and river water with method detection limits of 0.25–0.72 ng/mL. The recoveries of benzophenones for water samples at two spiking levels (500 and 5000 ng/mL for each benzophenone) were in the range of 86.9–103.3% with relative standard deviations (n = 3) below 9.2%.  相似文献   

8.
A novel molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed for the selective extraction of telmisartan from human urine. Molecularly imprinted polymers were prepared by a noncovalent imprinting approach through UV‐radical polymerization using telmisartan as a template molecule, 2‐dimethylamino ethyl methacrylate as a functional monomer, ethylene glycol dimethacrylate as a cross‐linker, N,N‐azobisisobutyronitrile as an initiator, chloroform as a porogen. Molecularly imprinted polymers and nonimprinted control polymer sorbents were dry‐packed into solid‐phase extraction cartridges, and eluates from cartridges were analyzed using a spectrofluorimeter. Limit of detection and limit of quantitation values were 11.0 and 36.0 ng/mL, respectively. A very high imprinting factor (16.1) was achieved and recovery values for the telmisartan spiked in human urine were in the range of 76.1–79.1%. In addition, relatively low within‐day (0.14–1.6%) and between‐day (0.11–1.31%) precision values were obtained. Valsartan was used to evaluate the selectivity of sorbent as well. As a result, a sensitive, selective, and simple molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed and successfully applied to the direct determination telmisartan in human urine.  相似文献   

9.
The selective extraction of baicalin is important to its quality control especially when the matrices are complicated. In this work, a novel molecularly imprinted polymer was prepared for the selective extraction of baicalin in herbs. The molecularly imprinted polymer was synthesized by the copolymerization of 4‐vinyl pyridine and ethylene glycol dimethacrylate in the presence of baicalin by a precipitation polymerization method. After the optimization of parameters for molecularly imprinted polymer preparation, including the functional monomer, porogen, sampling solvent, and washing solvent, good selectivity was obtained, with an imprinting factor of about 4, which is much better than that achieved by the bulk‐polymerization method. The performances of the prepared molecularly imprinted polymers were systematically investigated, including adsorption kinetics, isotherm experiment, and Scatchard analysis. On the basis of the good adsorptive capability of the prepared molecularly imprinted polymer, it was also applied for the pretreatment of baicalin in Scutellaria baicalensis Georgi. The result showed that most of the matrices were removed and baicalin was selectively enriched.  相似文献   

10.
In this paper we describe, for the first time, a molecularly imprinted polymer (MIP) for the antibiotic amoxicillin (AMX), synthesised by a noncovalent molecular imprinting approach and used to extract AMX selectively from urine samples. The MIP was applied as a molecularly selective sorbent in molecularly imprinted SPE (MISPE) in an off-line mode, where it showed useful cross-selectivity for a structurally related antibiotic, cephalexin (CPX). By using a MISPE protocol, the MIP was able to selectively extract both AMX and CFX from 5 mL of water spiked with 10 mg/L with recoveries of 75 and 78% for AMX and CFX, respectively. When applied to real samples (urine) at clinically relevant concentrations, recoveries from 2 mL of human urine spiked with 20 mg/L decreased slightly to 65 and 63% for AMX and CFX, respectively. To demonstrate further the selectivity of the MIP obtained, a comparison with commercially available SPE cartridges was performed. Improvements in the retention of both AMX and CFX on the MIP were obtained relative to the commercially available cartridges, and the MISPE extracts were considerably cleaner, due to molecularly selective analyte binding by the MIP.  相似文献   

11.
We describe ultrasonic‐assisted dispersive solid‐phase extraction based on ion‐imprinted polymer (UA‐DSPE‐IIP) nanoparticles for the selective extraction of silver ions. Ultrasound is a good and robust method to facilitate the extraction of target ions in the sorption step and elution of the target ions in the desorption step. The IIP nanoparticles used in the UA‐DSPE‐IIP were prepared by precipitation polymerization. To prepare the IIP nanoparticles, 2‐vinylpyridine, ethylene glycol dimethacrylate, 2,2′‐azobisisobutyronitrile, 2‐picolinic acid, silver and chloroform–methanol (50:50) solution were used as functional monomer, cross‐linker, initiator, silver‐binding ligand, template ion and porogen, respectively. The IIP nanoparticles were characterized using Fourier transformed infrared spectroscopy, thermogravimetric and differential thermal analysis, X‐ray diffraction and scanning electron microscopy. A Box–Behnken design was used for optimization of sorption and desorption steps in UA‐DSPE‐IIP. In the sorption step: pH of solution, IIP amount (mg), sonication time for sorption (min); in the desorption step: concentration of eluent (mol l−1), volume of eluent (ml), sonication time (min) for desorption were investigated and optimized by Box–Behnken design. The optimum conditions for the method were: pH of solution, 7; sonication time for sorption, 7 min; IIP amount, 17 mg; type and concentration of eluent, HCl 1.5 mol l−1; volume of eluent, 2 ml; sonication time for desorption, 140 s. Under the optimized conditions the limit of detection and relative standard deviation for the detection of silver ions using UA‐DSPE‐IIP were found to be 0.09 μg l−1 and <3%, respectively.  相似文献   

12.
The influence of polymer matrix on the extraction efficiency for Cu(II) and selectivity against metal ions such as Ni(II), Cd(II), Pb(II) of Cu(II) imprinted copolymer gels was described. The functional monomers investigated include the weakly basic 4‐vinylpyridine (4‐VP) and its mixure with the acidic and hydrogen binding methacrylic acid. Copolymer gels were prepared by dispersion cross‐linking copolymerization using Cu(II)–4‐(2‐pyridylazo)resorcinol complex, Cu(II), or 4‐(2‐pyridylazo)resorcinol as templates. The chemical structure and morphology of the Cu(II)‐imprinted microbeads are defined using elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. Extraction efficiencies of newly synthesized sorbents were studied by batch procedure. The prepared copolymer gel with 4‐VP as monomer and Cu(II)–4‐(2‐pyridylazo)resorcinol complex has higher capacity and selectivity toward Cu(II) than the copolymer gels prepared using the mixture of methacrylic acid and 4‐VP. This new sorbent can be used as an effective SPE material for the highly selective preconcentration and separation of Cu(II) in sea water samples. It shows high mechanical and chemical stability.  相似文献   

13.
An analytical method is reported for the preparation of K+‐imprinted nanoparticles using cryptand 222 as the complexing agent, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the crosslinker and 2,2′‐azobisisobutyronitrile as the radical initiator. The prepared particles have a diameter of 200–250 nm. The maximum adsorption capacity of potassium ion‐imprinted polymer particles was 120 μmol/g. The optimum pH for quantitative extraction was 9.0. The nature of the eluent, eluent concentration, adsorption and desorption times, weight of the polymer material, aqueous phase, and desorption volumes were also studied. The relative selectivity coefficients of K+/Li+, K+/Na+, K+/Rb+ and K+/Cs+ were 48.10, 4.80, 29.70, and 43.4, respectively. The relative standard deviation and limit of detection of the method were obtained 1.61% and 4.62 ng/L, respectively. Finally, the method was applied for the determination of potassium ions from different samples using flame photometry.  相似文献   

14.
Main inborn errors of metabolism diagnosable through uracil (Ura) analysis and the therapeutic monitoring of toxic 5‐fluorouracil (5FU) in dihydro pyrimidine dehydrogenase (DPD) deficient patients require a sensitive, reproducible, selective and accurate method. In this work, an artificial receptor in the format of molecularly imprinted polymer (MIP) brush ‘grafted to’ the surface of sol–gel immobilized on cost‐effective homemade solid‐phase microextraction (SPME) fibers, individually imprinted with either of Ura and 5FU, was used in combination with a voltammetric sensor duly modified with the same MIP. This combination provided up to 10‐ and 8.4‐fold preconcentrations of Ura and 5FU, respectively, which was more than sufficient for achieving stringent detection limits in the primitive diagnosis of uracil disorders and fluoropyrimidine toxicity in DPD‐deficient patients. The proposed method permits the assessment of Ura and 5FU plasma concentrations with detection limits pf 0.0245 and 0.0484 ng mL?1 (RSD = 1.0–2.5%, S/N = 3), respectively, without any problems of non‐specific false‐positives and cross‐reactivities in complicated matrices of biological samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A cross‐linked methacrylate molecularly imprinted polymer (poly‐4‐vinylpyridine‐co‐trimethylolpropane‐trimethacrylate) selective for bisphenol A (BPA) was synthesized, using a fluorinated BPA derivative (4,4′‐(hexafluoroisopropylidene)‐diphenol) as a mimic template, and applied to the analysis of real‐world samples of process and potable waters. The molecularly imprinted polymer also showed a high affinity and selectivity for 17‐β‐estradiol and ethynylestradiol. A method to analyze BPA, 17‐β‐estradiol, and ethynylestradiol at ultratrace levels was thus developed from a screening procedure to monitor endocrine‐disrupting chemicals in water samples. The method consists of the BPA‐selective cleanup by molecularly imprinted SPE using cartridges packed with the polymer developed, its recovery by stir bar sorptive extraction after ad hoc derivatization to obtain the corresponding BPA‐acetate, and its analysis by GC‐time window‐SIM‐MS after online thermal desorption. The method showed good linearity in the working range (R2=0.9969), high repeatability (RSD% <10.1), recoveries always above 90%, and very low LOD (10 pg/L) and LOQ (1 ng/L) and can easily be extended to the determination of 17‐β‐estradiol and ethynylestradiol ultratraces. The method's effectiveness was evaluated by analyzing the real‐world water samples; it enabled preconcentration and detection of BPA at ultratrace levels.  相似文献   

16.
A prepared molecularly imprinted polymer with ethyl p‐hydroxybenzoate as template molecule was applied for the first time to a homemade solid‐phase microextraction fiber. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was characterized by scanning electron microscopy and thermogravimetric analysis. Various parameters were investigated, including extraction temperature, extraction time, and desorption time. Under the optimum extraction conditions, the molecularly imprinted polymer‐coated solid‐phase microextraction fiber exhibited higher selectivity with greater extraction capacity toward parabens compared with the nonimprinted polymer‐coated solid‐phase microextraction fiber and commercial fibers. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was tested using gas chromatography to determine parabens, including methyl p‐hydroxybenzoate, ethyl p‐hydroxybenzoate, and propyl p‐hydroxybenzoate. The linear ranges were 0.01–10 μg/mL with a correlation coefficient above 0.9943. The detection limits (under signal‐to‐noise ratio of 3) were below 0.30 μg/L. The fiber was successfully applied to the simultaneous analysis of three parabens in spiked soy samples with satisfactory recoveries of 95.48, 97.86, and 92.17%, respectively. The relative standard deviations (n=6) were within 2.83–3.91%. The proposed molecularly imprinted polymer‐coated solid‐phase microextraction method is suitable for selective extraction and determination of trace parabens in food samples.  相似文献   

17.
An analytical methodology incorporating a molecularly imprinted solid-phase extraction procedure (MISPE) has been developed for the determination of parabens in environmental solid samples. Four different polymers were prepared combining the use of acetonitrile or toluene as porogen, and 4-vinylpyridine (VP) or methacrylic acid (MAA) as monomer, using benzylparaben (BzP) as a template molecule. Although all the polymers were able to recognize the template in rebinding experiments, the MIP prepared in toluene using MAA showed better performance. This polymer was also capable of recognizing other parabens (methyl, ethyl, isopropyl, propyl, isobutyl, butyl and benzylparaben) allowing to develop an appropriated MISPE procedure for this family of compounds. The extraction of the parabens from environmental solid samples was performed by ultrasonic assisted extraction in small columns (SAESC), and this procedure next to MISPE as clean-up step followed by HPLC-UV determination was successfully used for the determination of parabens in soil and sediment samples of different locations. Recoveries ranging from 80% to 90% have been achieved depending on the compound and the samples, and limits of detection (LODs) were under 1 ng g−1 for all the compounds, making this method suitable for the determination of parabens in environmental solid matrices. The method was further applied to the determination of paraben contents in real samples, founding levels up to 11.5 ng g−1 in sea sediments.  相似文献   

18.
Toward improving the selective adsorption performance of molecularly imprinted polymers in strong polar solvents, in this work, a new ionic liquid functional monomer, 1‐butyl‐3‐vinylimidazolium bromide, was used to synthesize sulfamethoxazole imprinted polymer in methanol. The resulting molecularly imprinted polymer was characterized by Fourier transform infrared spectra and scanning electron microscopy, and the rebinding mechanism of the molecularly imprinted polymer for sulfonamides was studied. A static equilibrium experiment revealed that the as‐obtained molecularly imprinted polymer had higher molecular recognition for sulfonamides (e.g., sulfamethoxazole, sulfamonomethoxine, and sulfadiazine) in methanol; however, its adsorption of interferent (e.g., diphenylamine, metronidazole, 2,4‐dichlorophenol, and m‐dihydroxybenzene) was quite low. 1H NMR spectroscopy indicated that the excellent recognition performance of the imprinted polymer was based primarily on hydrogen bond, electrostatic and π‐π interactions. Furthermore, the molecularly imprinted polymer can be employed as a solid phase extraction sorbent to effectively extract sulfamethoxazole from a mixed solution. Combined with high‐performance liquid chromatography analysis, a valid molecularly imprinted polymer‐solid phase extraction protocol was established for extraction and detection of trace sulfamethoxazole in spiked soil and sediment samples, and with a recovery that ranged from 93–107%, and a relative standard deviation of lower than 9.7%.  相似文献   

19.
Nonylphenol isomers (NP), linear nonylphenol (4-n-NP) and NP short chain ethoxylated derivates (NPEO1 and NPEO2) are degradation products of nonylphenol polyethoxylates, a worldwide used group of surfactants. All of them are considered endocrine disrupters due to their ability to mimic natural estrogens. In this paper, the preparation and evaluation of several 4-n-NP molecularly imprinted polymers (MIPs) for the selective extraction and clean-up of 4-n-NP, NP, NPEO1 and NPEO2 from complex environmental solid samples is described. Among the different combinations tested, a methacrylic acid-based imprinted polymer prepared in toluene provided the better performance for molecularly imprinted SPE (MISPE). Under optimum MISPE conditions, the polymer was able to selectively retain not only linear NP but also the endocrine disruptors NPEO1, NPEO2 and NP with recoveries ranging from 60 to 100%, depending upon the analyte. The developed MISPE procedure was successfully used for the determination of 4-n-NP, NP, NPEO1 and NPEO2 in sediments and sludge samples at concentration levels according to data reported in the literature for incurred samples. Finally, various sludge samples collected at five different sewage treatment plants from Madrid and commercial sludge for agriculture purposes were analysed. The measured concentrations of the different compounds varied from 3.7 to 107.5 mg/kg depending upon the analyte and the sample.  相似文献   

20.
This work describes the development by response surface methodology (RSM) of a procedure for copper determination by inductively coupled plasma optical emission spectrometry (ICP OES) in water samples after extraction by copper imprinted polymer. Results of the two-level full factorial design (24) based on an analysis of variance demonstrated that only the solution pH; amount of polymer and adsorption time were statistically significant. Optimal conditions for the extraction of copper samples were obtained by using Box-Behnken design. Solution pH; amount of polymer and adsorption time were regarded as factors in the optimisation study. The working conditions were 4.6, 0.03?g and 3.5?h, for solution pH, amount of polymer; and adsorption time, respectively. Under the optimised experimental conditions, the detection limit of the proposed method followed by ICP OES was found to be 0.8?µg?L?1. The relative standard deviation (RSD) was found to less than 0.81%. The pre-concentration factor was 22.5. The accuracy of the optimised procedure was evaluated by analysis of certified reference material. The method was applied to the determination of copper in water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号