首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host‐guest complexes between cryptophane‐A analogue with butoxy groups (cryptophane‐But) and chloromethanes (chloroform, dichloromethane) were investigated in the solid state by means of magic‐angle spinning 13C NMR spectroscopy. The separated local fields method with 13C‐1H dipolar recoupling was used to determine the residual dipolar coupling for the guest molecules encaged in the host cavity. In the case of chloroform guest, the residual dipolar interaction was estimated to be about 19 kHz, consistent with a strongly restricted mobility of the guest in the cavity, while no residual interaction was observed for encaged dichloromethane. In order to rationalize this unexpected result, we performed single crystal X‐ray diffraction studies, which confirmed that both guest molecules indeed were present inside the cryptophane cavity, with a certain level of disorder. To improve the insight in the dynamics, we performed a 13C NMR spin‐lattice relaxation study for the dichloromethane guest in solution. The system was characterized by chemical exchange, which was slow on the chemical shift time scale but fast with respect to the relaxation rates. Despite these disadvantageous conditions, we demonstrated that the data could be analyzed and that the results were consistent with an isotropic reorientation of dichloromethane within the cryptophane cavity. Copyright © 2015 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.  相似文献   

2.
The motional dynamics of a van der Waals inclusion complex of cryptophane-E and chloroform has been investigated by a combined NMR exchange and relaxation study. The kinetics of exchange of chloroform between the bulk solution and the complex was investigated by means of proton EXSY measurements. The carbon-13 relaxation of the cryptophane-E host and of the bound chloroform guest was analyzed using the Lipari-Szabo "model-free" approach. For interpretation of the carbon-13 relaxation measurements for chloroform, the chemical-exchange process of complex formation and dissociation had to be taken into account in terms of the modified Bloch equations. It was found that the complex behaves as a single molecule without any significant guest chloroform motion inside the host's cavity.  相似文献   

3.
Multitopic organic linkers can provide a means to organize metal cluster nodes in a regular three‐dimensional array. Herein, we show that isonicotinic acid N‐oxide (HINO) serves as the linker in the formation of a metal–organic framework featuring Dy2 single‐molecule magnets as nodes. Importantly, guest solvent exchange induces a reversible single‐crystal to single‐crystal transformation between the phases Dy2(INO)4(NO3)2?2 solvent (solvent=DMF (Dy2‐DMF), CH3CN (Dy2‐CH3CN)), thereby switching the effective magnetic relaxation barrier (determined by ac magnetic susceptibility measurements) between a negligible value for Dy2‐DMF and 76 cm?1 for Dy2‐CH3CN. Ab initio calculations indicate that this difference arises not from a significant change in the intrinsic relaxation barrier of the Dy2 nodes, but rather from a slowing of the relaxation rate of incoherent quantum tunneling of the magnetization by two orders of magnitude.  相似文献   

4.
A biodegradable diblock copolymer of poly(ϵ‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA) was synthesized and characterized. The inclusion compound (IC) of this copolymer with α‐cyclodextrin (α‐CD) was formed and characterized. Wide‐angle X‐ray diffraction showed that in the IC crystals α‐CDs were packed in the channel mode, which isolated and restricted the individual guest copolymer chains to highly extended conformation. Solid‐state 13C NMR techniques were used to investigate the morphology and dynamics of both the bulk and α‐CD‐IC isolated PCL‐b‐PLLA chains. The conformation of the PCL blocks isolated within the α‐CD cavities was similar to the crystalline conformation of PCL blocks in the bulk copolymer. Spin–lattice relaxation time (T1C) measurements revealed a dramatic difference in the mobilities of the semicrystalline bulk copolymer chains and those isolated in the α‐CD‐IC channels. Carbon‐observed proton spin–lattice relaxation in the rotating frame measurements (TH) showed that the bulk copolymer was phase‐separated, while, in the IC, exchange of proton magnetization through spin‐diffusion between the isolated guest polymer chains and the host α‐CD was not complete. The two‐dimensional solid‐state heteronuclear correlation (HetCor) method was also employed to monitor proton communication in these samples. Intrablock exchange of proton magnetization was observed in both the bulk semicrystalline and IC copolymer samples at short mixing times; however, even at the longest mixing time, interblock proton communication was not observed in either sample. In spite of the physical closeness between the isolated included guest chains and the host α‐CD molecules, efficient proton spin diffusion was not observed between them in the IC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2086–2096, 2005  相似文献   

5.
Summary: The formation of a molecular‐complex crystalline phase of syndiotactic polystyrene (sPS) that contains a stable nitroxide radical compound, 2,2,6,6‐tetramethylpiperidinyl‐N‐oxyl (TEMPO), is confirmed by IR and electron spin resonance (ESR) spectroscopy, X‐ray diffractometry, and thermogravimetric analysis. Through a guest exchange procedure assisted by a plasticizing agent, the original guest (chloroform) contained in the starting clathrate phase is completely replaced by TEMPO. Although the conformational regularity of the sPS helices in the resultant crystalline phase that contains TEMPO is similar to that in the starting clathrate phase, the host lattice expands in the 010 direction. The guest TEMPO molecules exhibit a significantly broadened ESR signal because of their highly concentrated state in the complex crystalline phase.

Thermogravimetric measurement of a powder sample of the sPS/TEMPO complex.  相似文献   


6.
For the purpose of investigating the coordination behavior of sterically congested alkenes and exploring the possibility of cofacial complexation in the polycyclic aromatic system for the formation of extended polymeric networks, a new tetradentate ligand, 1,1,2,2‐tetrakis[4‐(1H‐1,2,4‐triazol‐1‐yl)phenyl]ethylene (TTPE), has been designed and synthesized. By using TTPE as a building block with regard to the self‐assembly with MnCl2 ? 4 H2O, a novel two‐dimensional coordination framework {[Mn(TTPE)Cl2] ? 4 CHCl3}n ( 1 ) can be isolated. Anion‐exchange and organic‐group‐functionalized aromatic guest TTPE‐loaded host–guest complex experimental results indicate that coordinated Cl? anions in the 2D framework of 1 can be completely replaced with dissociative ClO4? groups in an irreversible single‐crystal‐to‐single‐crystal transformation fashion, as evidenced by the anion‐exchange products of {[Mn(TTPE)(H2O)2](ClO4)2 ? 0.5 TTPE ? 5.25 H2O}n ( 2 ). Interestingly, TTPE, acting as an organic template, was encapsulated in the confined space of the 2D grid of 2 . To the best of our knowledge, such large organic molecules encapsulated in the reactive organic‐group‐functionalized aromatic‐guest‐loaded host–guest complex are unprecedented up to now. Luminescence measurements illustrate that 1 and 2 represent novel examples of sensing materials based on triazole derivatives. Further, 2 has been demonstrated by tuning the fluorescence response of porous metal–organic frameworks as a function of adsorbed small analytes.  相似文献   

7.
Hybrid supramolecular capsules self‐assemble by simultaneously forming hydrogen and metal–ligand coordination bonds on mixing a C2‐symmetrical cavitand (calix[4]resorcinarene‐based cavitands with ureide and terminal 4‐pyridyl units) with platinum or palladium complexes ([Pt(OTf)2] or [Pd(OTf)2] with chelating bisphosphines) in 1:1 ratio. Hemicapsular assemblies formed in the presence of excess amounts of cavitand relative to the platinum or palladium complexes are identified as intermediates in the above self‐assembly process by 2D‐NOESY spectroscopy. External‐anion‐assisted encapsulation of a neutral guest, 4,4′‐diiodobiphenyl, inside the hybrid supramolecular capsules accompanied conformational changes in the hydrogen‐bonding moieties. The in/out exchange ratio of the encapsulated guest depends on the bite angle of the bisphosphine ligand. Addition of DMSO accelerates guest exchange by weakening the hydrogen bonds in the encapsulation complex. Therefore, variations in the structure of the metal complex and amount of polar solvent exert dual control on the dynamics of the guest exchange.  相似文献   

8.
Guest–host complex between cryptophane C, possessing two non‐equivalent caps, and chloroform is investigated by NMR spectroscopy. The kinetics of the chloroform exchange between the bound and free sites is determined by 1H exchange spectroscopy. Moreover, the preferential orientation of chloroform molecule with respect to the cryptophane C frame is examined by the NOESY and ROESY experiments. The experimental findings are compared to the results of quantum chemical calculations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A tetragold(I) rectangle‐like metallocage containing two pyrene‐bis‐imidazolylidene ligands and two carbazolyl‐bis‐alkynyl linkers is used for the encapsulation of a series of polycyclic aromatic hydrocarbons (PAHs), including corannulene. The binding affinities obtained for the encapsulation of the planar PAHs guests in CD2Cl2 are found to exponentially increase with the number of π‐electrons of the guest (1.3 > logK >6.6). For the bowl‐shaped molecule of corannulene, the association constant is much lower than the expected one according to its number of electrons. The molecular structure of the host–guest complex formed with corannulene shows that the molecule of the guest is compressed, while the host is expanded, thus showing an interesting case of artificial mutual induced‐fit arrangement.  相似文献   

10.
Controlling the guest expulsion process from a receptor is of critical importance in various fields. Several coordination cages have been recently designed for this purpose, based on various types of stimuli to induce the guest release. Herein, we report the first example of a redox‐triggered process from a coordination cage. The latter integrates a cavity, the panels of which are based on the extended tetrathiafulvalene unit (exTTF). The unique combination of electronic and conformational features of this framework (i.e. high π‐donating properties and drastic conformational changes upon oxidation) allows the reversible disassembly/reassembly of the redox‐active cavity upon chemical oxidation/reduction, respectively. This cage is able to bind the three‐dimensional B12F122? anion in a 1:2 host/guest stoichiometry. The reversible redox‐triggered disassembly of the cage could also be demonstrated in the case of the host–guest complex, offering a new option for guest‐delivering control.  相似文献   

11.
《化学:亚洲杂志》2017,12(14):1824-1835
An adaptable cyclic porphyrin dimer with highly flexible linkers has been used as an artificial molecular container that can efficiently encapsulate various aromatic guests (TCNQ/C60/C70) through strong π–π interactions by adjusting its cavity size and conformation. The planar aromatic guest (TCNQ) can be easily and selectively exchanged with larger aromatic guests (C60/C70). During the guest‐exchange process, the two porphyrin rings switch their relative orientation according to the size and shape of the guests. This behavior of the cyclic container has been thoroughly investigated by using UV/Vis spectroscopy, NMR spectroscopy, and X‐ray crystal structure determination of the host–guest assemblies. The electrochemical and photophysical studies demonstrated the occurrence of photoinduced electron transfer from bisporphyrin to TCNQ/C60/C70 in the respective host–guest assemblies. The cyclic host can form complexes with C60 and C70 with association constants of (2.8±0.2)×105 and (1.9±0.3)×108 m −1, respectively; the latter value represents the highest binding affinity for C70 reported so far for zinc(II) bisporphyrinic receptors. This high selectivity for the binding of C70 versus C60 allows the easy extraction and efficient isolation of C70 from a C60/C70 fullerene mixture. Experimental evidence was substantiated by DFT calculations.  相似文献   

12.
Solid‐state complexation of syndiotactic polystyrene (sPS) with a crown ether compound, 1,4,7,10‐tetraoxa‐cyclododecane (12‐crown‐4), took place when a film of sPS/chloroform clathrate was subjected to a guest exchange procedure assisted with a plasticizing agent. The new guest 12‐crown‐4 molecules were incorporated into the crystalline region of the sPS film, without causing a large conformational change of host sPS helices. X‐ray diffraction and thermogravimetric investigations showed that sPS/12‐crown‐4 complex had a clathrate complex structure which contained four 12‐crown‐4 molecules per unit cell. IR and Raman data suggested that 12‐crown‐4 took a Ci‐type conformation in the sPS complex phase.

  相似文献   


13.
The crystal structures of three 1:2 inclusion compounds that consist of host mol­ecule 2,5‐di­phenyl­hydro­quinone (C18H14O2) and the guest mol­ecules 2‐pyridone (C5H5NO), 1,3‐di­phenyl‐2‐propen‐1‐one (chalcone, C15H12O) and 1‐(4‐meth­oxy­phenyl)‐3‐phenyl‐2‐propen‐1‐one (4′‐methoxy­chal­cone, C16H14O2) were determined in order to study the ability of guest mol­ecules in inclusion compounds to undergo photoreaction. All of the crystals were found to be photoresistant. The three inclusion compounds crystallize in triclinic space group . In each case, the host/guest ratio is 1:2, with the host mol­ecules occupying crystallographic centers of symmetry and the guest mol­ecules occupying general positions. The guest mol­ecules in each of the inclusion compounds are linked to the host mol­ecules by hydrogen bonds. In the inclusion compound where the guest mol­ecule is pyridone, the host mol­ecule is disordered so that the hydroxy groups are distributed between two different sites, with occupancies of 0.738 (3) and 0.262 (3). The pyridone mol­ecules form dimers via N—H⋯O hydrogen bonds.  相似文献   

14.
A heterotritopic copillar[5]arene monomer by introducing effective neutral guest moieties (methylene chains end‐capped with cyano and triazole groups) to a pillar[5]arene macrocycle is prepared. This well‐designed AB2‐type copillar[5]arene contains strong host–guest recognition motifs that are connected with relatively flexible and long linkers, thus efficiently assembles to form supramole­cular hyperbranched polymer (SHP) in chloroform solution, which is characterized by various techniques including 1H NMR, DOSY, viscosity, DLS, and TEM. Particularly, this supramolecular polymer can be effectively depolymerized by adding a competitive butanedinitrile guest.

  相似文献   


15.
We have synthesized a microporous magnetic framework that contained supertetrahedral decametallic cobalt clusters as nodes and 4‐(tris(hydroxymethyl)methyl)pyridine ligands as linkers in a NaCl‐like network. This complex shows canted antiferromagnetism with spin‐glass behavior. After the removal of the guest molecules, the spin‐canting and spin‐glass behaviors are maintained. The permanent porosity was evaluated by N2‐adsorption measurements. This complex mainly shows a hydrophobic nature, as validated by MeOH‐ and water‐adsorption measurements, which is consistent with the grand canonical Monte Carlo (GCMC) theoretical simulation.  相似文献   

16.
A solid‐state fluorescent host system was created by self‐assembly of a 21‐helical columnar organic fluorophore composed of (1R,2S)‐2‐amino‐1,2‐diphenylethanol and fluorescent 1‐pyrenecarboxylic acid. This host system has a characteristic 21‐helical columnar hydrogen‐ and ionic‐bonded network. Channel‐like cavities are formed by self‐assembly of this column, and various guest molecules can be included by tuning the packing of this column. Moreover, the solid‐state fluorescence of this host system can change according to the included guest molecules. This occurs because of the change in the relative arrangement of the pyrene rings as they adjust to the tuning of the packing of the shared 21‐helical column, according to the size of the included guest molecules. Therefore, this host system can recognize slight differences in molecular size and shape.  相似文献   

17.
Cationic (arene)ruthenium‐based tetranuclear complexes of the general formula [Ru4(η6‐p‐cymene)4(μ‐NN)2(μ‐OO∩OO)2]4+ were obtained from the dinuclear (arene)ruthenium complexes [Ru2(η6p‐cymene)2(μ‐OO∩OO)2Cl2] (p‐cymene=1‐methyl‐4‐(1‐methylethyl)benzene, OO∩OO=5,8‐dihydroxy‐1,4‐naphthoquinonato(2?), 9,10‐dihydroxy‐1,4‐anthraquinonato(2?), or 6,11‐dihydroxynaphthacene‐5,12‐dionato(2?)) by reaction with pyrazine or bipyridine linkers (NN=pyrazine, 4,4′‐bipyridine, 4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine]) in the presence of silver trifluoromethanesulfonate (CF3SO3Ag) (Scheme). All complexes 4 – 12 were isolated in good yield as CF3SO salts, and characterized by NMR and IR spectroscopy. The host–guest properties of the metallarectangles incorporating 4,4′‐bipyridine and (4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine] linkers were studied in solution by means of multiple NMR experiments (1D, ROESY, and DOSY). The largest metallarectangles 10 – 12 incorporating (4,4′‐[(1E)‐ethene‐1,2‐diyl]bis[pyridine] linkers are able to host an anthracene, pyrene, perylene, or coronene molecule in their cavity, while the medium‐size metallarectangles 7 – 9 incorporating 4,4′‐bipyridine linkers are only able to encapsulate anthracene. However, out‐of‐cavity interactions are observed between these 4,4′‐bipyridine‐containing rectangles and pyrene, perylene, or coronene. In contrast, the small pyrazine‐containing metallarectangles 4 – 6 show no interaction in solution with this series of planar aromatic molecules.  相似文献   

18.
Upon stirring inclusion crystals of p-tert-butylthiacalix[4]arene (2) in solvents with heating, guest compounds were efficiently desorbed to yield guest-free crystals. More specifically, upon treatment with methanol, the exchange of guest compounds with methanol in the crystals, followed by the desorption of the methanol afforded metastable host crystals , whereas, upon treatment with heptane, the dissolution of the inclusion crystals and simultaneous crystallization of compound 2 afforded stable host crystals . Further, a host crystal of p-tert-butylcalix[4]arene (1) was recovered by the treatment of 2:1 (host/guest) inclusion crystals of compound 1 with supercritical carbon dioxide (scCO2), and through the combination of the guest exchange of 1:1 inclusion crystals of compound 1 with hexane and scCO2 treatment of the resulting 2:1 inclusion crystals 12·hexane. Although the recovered host crystal of compound 1 contained a small amount of CO2, it could be reused for the inclusion of organic compounds.  相似文献   

19.
A supramolecular/synthetic method has been devised to affix a sterically hindered substituent onto a fullerene guest encapsulated in a tubular host. A two‐wheeled complex of (C59N)‐(C59N) with a tubular host was oxidatively bisected to afford a C59N+ cation captured in the tube. The C59N+ cation in the tube was then trapped by ethanol or water, which led to an oxy substituent pinned on the guest. The guest motions within the tube were modulated by the pinned substituent, and up‐and‐down flipping motions were halted by an ethoxy substituent. A hydroxy substituent, however, was ineffective in halting the flipping motions, despite the tight‐fitting relationship between the tubular host and the spherical guest. Theoretical calculations of the dynamics revealed that the flipping motions were assisted by OH‐π hydrogen bonds between the guest and the carbon‐rich wall and that sliding motions of the OH group were also facilitated by deformations of the tube.  相似文献   

20.
Modern supramolecular chemistry is overwhelmingly based on non‐covalent interactions involving organic architectures. However, the question of what happens when you depart from this area to the supramolecular chemistry of structures based on non‐carbon frameworks remains largely unanswered, and is an area that potentially provides new directions in molecular activation, host–guest chemistry, and biomimetic chemistry. In this work, we explore the unusual host–guest chemistry of the pentameric macrocycle [{P(μ‐NtBu}2NH]5 with a range of anionic and neutral guests. The polar coordination site of this host promotes new modes of guest encapsulation via hydrogen bonding with the π systems of the unsaturated C≡C and C≡N bonds of acetylenes and nitriles as well as with the PCO? anion. Halide guests can be kinetically locked within the structure by oxidation of the phosphorus periphery by oxidation to PV. Our study underscores the future promise of p‐block macrocyclic chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号