首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that, for reaction–diffusion systems, if the nonlinearities grow faster than a polynomial, nothing seems to be known for instance. The purpose of this paper is to give sufficient conditions guaranteeing global existence, uniqueness and uniform boundedness of solutions for coupled reaction–diffusion equations without condition growth on the reactions terms f and g in case f + g ≠ 0. These systems possess many and various applications in physics as the diffusion of the Phosphorus in the Silicone or some models describing some nuclear reactions; there have also been other applications in chemistry and biology. Our techniques are based on the Lyapunov functional methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We consider a reaction‐diffusion equation in which the usual diffusion term also depends on the past history of the diffusion itself. This equation has been analysed by several authors, with an emphasis on the longtime behaviour of the solutions. In this respect, the first results have been obtained by using the past history approach. They show that the equation, subject to a suitable boundary condition, defines a dissipative dynamical system which possesses a global attractor. A similar theorem has been recently proved by Chepyzhov and Miranville, using a different method based on the notion of trajectory attractors. In addition, those authors provide sufficient conditions that ensure the existence of a Lyapunov functional. Here we show that a similar result can be demonstrated within the past history approach, with less restrictive conditions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
We investigate a reaction–diffusion system proposed by H. Meinhardt as a model for pattern formation on seashells. We give a new proof for the existence of a local weak solution for general initial conditions and parameters upon using an iterative approach. Furthermore, the solution is shown to exist globally for suitable initial data. The behavior of the solution in time and space is illustrated through numerical simulations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A demonstration method is presented, which will ensure the existence of positive global solutions in time to the reaction–diffusion equation ?utu+up=0 in ?n×[0, ∞), for exponents p?3 and space dimensions n?3. This method does not require the initial value to have a specific uniform smallness condition, but rather to satisfy a bell‐like form. The method is based on a specific upper solution, which models the diffusion process of the heat equation. The upper solution is not self‐similar, but does have a self‐similar‐like form. After transforming the reaction–diffusion problem into an equivalent one, whose initial value is uniformly very small, a local solution is obtained in the time interval [0, 1] by the use of this upper solution. This local solution is then extended to [0, ∞) through an infinite sequence of extensions. At each step, an appropriate change of variables will transform the extension into a problem nearly identical to the local problem in [0, 1]. These transformations exploit the diffusive and self‐similar‐like nature of the upper solution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
We explore a mechanism of pattern formation arising in processes described by a system of a single reaction–diffusion equation coupled with ordinary differential equations. Such systems of equations arise from the modeling of interactions between cellular processes and diffusing growth factors. We focus on the model of early carcinogenesis proposed by Marciniak‐Czochra and Kimmel, which is an example of a wider class of pattern formation models with an autocatalytic non‐diffusing component. We present a numerical study showing emergence of periodic and irregular spike patterns because of diffusion‐driven instability. To control the accuracy of simulations, we develop a numerical code on the basis of the finite‐element method and adaptive mesh grid. Simulations, supplemented by numerical analysis, indicate a novel pattern formation phenomenon on the basis of the emergence of nonstationary structures tending asymptotically to a sum of Dirac deltas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we consider a degenerate reaction–diffusion system coupled by nonlinear memory. Under appropriate hypotheses, we prove that the solution either exists globally or blows up in finite time. Furthermore, the blow-up rates are obtained.  相似文献   

7.
In this paper, we study the quenching phenomenon for a reaction–diffusion system with singular logarithmic source terms and positive Dirichlet boundary conditions. Some sufficient conditions for quenching of the solutions in finite time are obtained, and the blow-up of time-derivatives at the quenching point is verified. Furthermore, under appropriate hypotheses, the non-simultaneous quenching of the system is proved, and the estimates of quenching rate is given.  相似文献   

8.
This article deals with the numerical solution to some models described by the system of strongly coupled reaction–diffusion equations with the Neumann boundary value conditions. A linearized three‐level scheme is derived by the method of reduction of order. The uniquely solvability and second‐order convergence in L2‐norm are proved by the energy method. A numerical example is presented to demonstrate the accuracy and efficiency of the proposed method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

9.
In this paper, a delayed reaction–diffusion neural network with Neumann boundary conditions is investigated. By analyzing the corresponding characteristic equations, the local stability of the trivial uniform steady state is discussed. The existence of Hopf bifurcation at the trivial steady state is established. Using the normal form theory and the center manifold reduction of partial function differential equations, explicit formulae are derived to determine the direction and stability of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the main results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
We investigate the convergence of an implicit Voronoi finite volume method for reaction–diffusion problems including nonlinear diffusion in two space dimensions. The model allows to handle heterogeneous materials and uses the chemical activities of the involved species as primary variables. The numerical scheme works with boundary conforming Delaunay meshes and preserves positivity and the dissipative property of the continuous system. Starting from a result on the global stability of the scheme (uniform, mesh‐independent global upper, and lower bounds), we prove strong convergence of the chemical activities and their gradients to a weak solution of the continuous problem. To illustrate the preservation of qualitative properties by the numerical scheme, we present a long‐term simulation of the Michaelis–Menten–Henri system. Especially, we investigate the decay properties of the relative free energy over several magnitudes of time, and obtain experimental orders of convergence for this quantity. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 141–174, 2016  相似文献   

11.
The aim of this paper is to establish a global existence result for a nonlinear reaction diffusion system with fractional Laplacians of different orders and a balance law. Our method of proof is based on a duality argument and a recent maximal regularity result due to Zhang.  相似文献   

12.
We prove in this paper a generalized result with a unified proof of global existence in time of classical solutions to a class of a reaction diffusion system with triangular diffusion matrix on a bounded domain in . The system in question is ut=aΔu ? f(x,t,u,v), vt=cΔu + dΔv + ρf(x,t,u,v), , t > 0 with f(x,t,0,η) = 0  and  f(x,t,ξ,η)≤Kφ(ξ)eση, for all  x∈Ω, t > 0, ξ≥0, η≥0; where  ρ, K  and  σ  are real positive constants. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
We study the large‐time behavior of (weak) solutions to a two‐scale reaction–diffusion system coupled with a nonlinear ordinary differential equations modeling the partly dissipative corrosion of concrete (or cement)‐based materials with sulfates. We prove that as t → ∞ , the solution to the original two‐scale system converges to the corresponding two‐scale stationary system. To obtain the main result, we make use essentially of the theory of evolution equations governed by subdifferential operators of time‐dependent convex functions developed combined with a series of two‐scale energy‐like time‐independent estimates. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The reaction–diffusion equations with initial condition and nonlocal boundary conditions are discussed in this article. A reproducing kernel space is constructed, in which an arbitrary function satisfies the initial condition and nonlocal boundary conditions of the reaction‐diffusion equations. Based on the reproducing kernel space, a new algorithm for solving the reaction–diffusion equations with initial condition and nonlocal boundary conditions is presented. Some examples are displayed to demonstrate the validity and applicability of the proposed method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

15.
The so-called bidomain system is possibly the most complete model for the cardiac bioelectric activity. It consists of a reaction–diffusion system, modeling the intra, extracellular and transmembrane potentials, coupled through a nonlinear reaction term with a stiff system of ordinary differential equations describing the ionic currents through the cellular membrane. In this paper we address the problem of efficiently solving the large linear system arising in the finite element discretization of the bidomain model, when a semiimplicit method in time is employed. We analyze the use of structured algebraic multigrid preconditioners on two major formulations of the model, and report on our numerical experience under different discretization parameters and various discontinuity properties of the conductivity tensors. Our numerical results show that the less exercised formulation provides the best overall performance on a typical simulation of the myocardium excitation process.  相似文献   

16.
The purpose of this paper is to give a proof of global existence of solutions for Gierer–Meinhardt systems with homogeneous Neumann boundary conditions. Our technique is based on Lyapunov functional argument that yields the uniform boundedness of solutions. The asymptotic behaviour of the solutions under suitable conditions is also studied. Moreover, under reasonable conditions on the exponents of the nonlinear term, we show the blow up in finite time of the solutions for the considered system. These results are valid for any positive initial data in , without any differentiability conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
We study the normalized difference between the solution u of a reaction–diffusion equation in a bounded interval [0,L], perturbed by a fast oscillating term arising as the solution of a stochastic reaction–diffusion equation with a strong mixing behavior, and the solution of the corresponding averaged equation. We assume the smoothness of the reaction coefficient and we prove that a central limit type theorem holds. Namely, we show that the normalized difference converges weakly in C([0,T];L2(0,L)) to the solution of the linearized equation, where an extra Gaussian term appears. Such a term is explicitly given.  相似文献   

18.
In this paper, we construct a kind of novel finite difference (NFD) method for solving singularly perturbed reaction–diffusion problems. Different from directly truncating the high‐order derivative terms of the Taylor's series in the traditional finite difference method, we rearrange the Taylor's expansion in a more elaborate way based on the original equation to develop the NFD scheme for 1D problems. It is proved that this approach not only can highly improve the calculation accuracy but also is uniformly convergent. Then, applying alternating direction implicit technique, the newly deduced schemes are extended to 2D equations, and the uniform error estimation based on Shishkin mesh is derived, too. Finally, numerical experiments are presented to verify the high computational accuracy and theoretical prediction.  相似文献   

19.
This paper is concerned with the asymptotic stability of traveling wave fronts of a class of nonlocal reaction–diffusion equations with delay. Under monostable assumption, we prove that the traveling wave front is exponentially stable by means of the (technical) weighted energy method, when the initial perturbation around the wave is suitable small in a weighted norm. The exponential convergent rate is also obtained. Finally, we apply our results to some population models and obtain some new results, which recover, complement and/or improve a number of existing ones.  相似文献   

20.
Convergence dynamics of reaction–diffusion recurrent neural networks (RNNs) with continuously distributed delays and stochastic influence are considered. Some sufficient conditions to guarantee the almost sure exponential stability, mean value exponential stability and mean square exponential stability of an equilibrium solution are obtained, respectively. Lyapunov functional method, M-matrix properties, some inequality technique and nonnegative semimartingale convergence theorem are used in our approach. These criteria ensuring the different exponential stability show that diffusion and delays are harmless, but random fluctuations are important, in the stochastic continuously distributed delayed reaction–diffusion RNNs with the structure satisfying the criteria. Two examples are also given to demonstrate our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号