首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of 2, 3-dihydro-1H-1. 5-benzodiazepines with dichlorocarbene generated in situ using benzyltriethylammonium chloride (TEBA) as a phase transfer catalyst in chloroform-aqueous sodium hydroxide mixture gave mainly 1,2-cycloadducts, cis and trans-1a, 3-disubstituted-1, 1-dichloro-1a, 2,3,4-tetrahydro-1H-azirino[1,2-a][1,5]benzodiazepines (2.3), and formylated 1,2-cycloadducts, trans-1a,3-disubstituted-1, 1-dichloro-4-formyl-1a, 2, 3, 4–1 H-azirino[1, 2-a][1, 5]benzodiacepines (4). The stereo-structures of cycloadducts and the mechanism are also discussed.  相似文献   

2.
Azimines IV. Kinetics and Mechanism of the Thermal Stereoisomerization of 2,3-Diaryl-1-phthalimido-azimines1) Mixtures of (1E, 2Z)- and (1Z, 2E)-2-phenyl-1-phthalimido-3-p-tolyl-azimine ( 3a and 3b , resp.) and (1E, 2Z)- and (1Z, 2E)-3-phenyl-1-phthalimido-2-p-tolylazimine ( 4a and 4b , resp.) were obtained by the addition of oxidatively generated phthalimido-nitrene (6) to (E)- and (Z)-4-methyl-azobenzene ( 7a and 7b , resp.). Whereas complete separation of the 4 isomers 3a, 3b, 4a and 4b was not possible, partial separation by chromatography and crystallization led to 5 differently composed mixtures of azimine isomers. The spectroscopic properties of these mixtures (UV., 1H-NMR.) were used to determine the ratios of isomers in the mixtures, and served as a tool for the assignment of constitution and configuration to those isomers which were dominant in each of these mixtures, respectively. Investigation of the isomerization of the azimines 3a, 3b, 4a and 4b within the 5 mixtures at various concentrations by 1H-NMR.-spectroscopy at room temperature revealed that only stereoisomers are interconverted ( 3a ? 3b; 4a ? 4b) and that the (1E, 2Z) ? (1Z, 2E) stereoisomerization is a unimolecular reaction. These observations exclude an isomerization mechanism via an intermediate 1-phthalimido-triaziridine (2) or via dimerization of 1-phthalimido-azimines (1) , respectively. The 3-p-tolyl substituted stereoisomers 3a and 3b isomerized slightly slower than the 3-phenyl substituted ones 4a and 4b , an effect which is consistent with the assumption that the rate determining step of the interconversion of (1E, 2Z)- and (1Z, 2E)-1-phthalimido-azimines (1a ? 1b) is the stereoisomerization of the stereogenic center at N(2), N(3), either by inversion of N(3) or by rotation around the N(2), N(3) bond. The total isomerization process is assumed to occur via the thermodynamically less stable (1Z, 2Z)- and (1E, 2E)-isomers 1c and 1d , respectively, as intermediates in undetectably low concentrations which stay in rapidly established equilibria with the observed, thermodynamically more stable (1E, 2Z)- and (1Z, 2E)-isomers 1a and 1b , respectively. At higher temperatures, the azimines 3 and 4 are transformed into N-phenyl-N,N′-phthaloyl-N′-p-tolyl-hydrazine (8) with loss of nitrogen.  相似文献   

3.
Thieno[3,2-b]pyridine ( 1 ) is oxidized to N-oxide 1a by means of m-chloroperoxybenzoic acid (83%). Compound 1a forms adducts with hydrogen chloride and picric acid and gives ring substitution alpha or gamma to the heteronitrogen atom. Thus, 1a plus nitric and sulfuric acids produces the 7-nitro-N-oxide 1m (63%), or plus phosphorus oxychloride gives a mixture of 5-chloro and 7-chloro ( 1j ) derivatives of 1 . Compound 1m is convertible into a variety of other derivatives of 1 , viz. 7-chloro-N-oxide, 1j , 7-bromo-N-oxide, 7-nitro and 7-amino. 5-Cyano- 1 , formed from 1a , is, in turn, transformed into a methyl imidate (93%), cyclic amidines, and a 5-tetrazolyl- 1 (91%). These results confirm the prediction that 1a , thieno[2,3-b]pyridine-4-oxide and quinoline 1-oxide should exhibit closely similar (i.e. analogous) chemical reactions.  相似文献   

4.
Reactions of 3-benzenesulfonyloxyalloxazine ( 1a ) and its 1-methyl analog 1b with a number of nucleophilic reagents are reported. Relatively small nucleophiles, such as hydroxide ion, methanol, ethanol, methylamine, hydrazine and hydroxylamine converted 1a to 4-carboxy-s-triazolo[4,3-a]quinoxalin-1(2H)-ones and the corresponding esters or amides. As the size of the amine increased from methylamine to ethylamine, dimethylamine, propylamine and isopropylamine, there were obtained 4-(carboxamido)-s-triazolo[4,3-a]quin-oxalin-1(2H)-ones, (1-carboxamido)imidazolo[4,5-b]quinoxalines and 2,3-bis(ureido)quinoxalines. Sodium hydride or potassium cyanide in hot DMF degraded 1a to imidazolo[4,5-b]quinoxaline. However, methylmer-captide and benzylmercaptide ions attacked the sulfonate group of 1a to form 3-hydroxyalloxazine. 1-Methyl-3-benzenesulfonyloxyalloxazine ( 1b ) reacted with methanol, ethanol, 1-propanol, and to some degree 2-propanol, in the presence of triethylamine to furnish anhydro-1-hydroxy-3-methyl-4-(alkoxycarbonyl)-s-triazolo[4,3-a]quinoxalinium hydroxides. However, sodium methoxide in methanol converted this starting material to a mixture of anhydro-1-hydroxy-3-methyl-s-triazolo[4,3-a]quinoxalinium hydroxide and 1-methyl-3-hydroxyflavazole. A saturated aqueous solution of triethylamine transformed 1b to anhydro-1-hydroxy-3-methyl-s-triazolo[4,3-a]quinoxalinium hydroxide, apparently via the corresponding unstable 4-carboxylic acid. The reactions of 1b with a number of aliphatic amines yielded either amides based on the above mesoionic system or on the 3-carboxamido-2-quinoxalyl semicarbazide structure. The reaction of 1b with potassium cyanide furnished 1-methylimidazolo[4,5-b]quinoxaline. Mechanisms to explain all of the degradations are advanced.  相似文献   

5.
Irradiation of benzofurazan ( 1 ) in benzene solution yields the azepine derivative 3 as the main photoproduct. Addition of methanol in the dark to the irradiated benzene solution of 1 results in the isolation of 3 together with a new product, methyl-1-cis, 3-cis-N-(4-cyano-buta-1, 3-dien-1-yl)-carbamate (1-cis, 3-cis- 2 ). Irradiation of 1 in methanol solution gives a mixture of the stereoisomeric methyl N-(4-cyano-buta-1, 3-dien-1-yl)-carbamates, from which the 1-trans, 3-cis isomer of 2 could be isolated in pure form. The observed photoproducts are formed via the reactive intermediates a , a nitrile-(nitrile oxide), and c , a nitrene, neither of which was isolated.  相似文献   

6.
1,3-Dipolar Cycloadditions of a Carhonyl-ylide with 1,3-Thiazole-5(4H)-thiones and Thioketones Inp-xylene at 150°, 3-phenyloxirane-2,2-dicarbonitrile ( 4b ) and 2-phenyl-3-thia-1-azaspiro[4.4]non-1-ene-4-thione ( 1a ) gave the three 1:1 adduets trans- 3a , cis- 3a , and 13a in 61, 21, and 3% yield, respectively (Scheme 3). The stereoisomers trans- 3a and cis- 3a are the products of a regioselective 1,3-dipolar cycloaddition of carbonylylide 2b , generated thermally by an electrocyclic ring opening of 4b (Scheme 6), and the C?S group of 1a . Surprisingly, 13a proved not to be a regioisomeric cycloadduct of 1a and 2b , but an isomer formed via cleavage of the O? C(3) bond of the oxirane 4b . A reaction mechanism rationalizing the formation of 13a is proposed in Scheme 6. Analogous results were obtained from the reaction of 4b and 4,4-dimethyl-2-phenyl-1,3-thiazole-5 (4H)-thione ( 1b , Scheme 3). The thermolysis of 4b in p-xylene at 130° in the presence of adamantine–thione ( 10 ) led to two isomeric 1:1 adducts 15 and 16 in a ratio of ca. 2:1, however, in low yield (Scheme 4). Most likely the products are again formed viathe two competing reaction mechanisms depicted in Scheme 6. The analogous reactions of 4b with 2,2,4,4-tetramethylcyclobutane-1,3-thione ( 11 ) and 9H-xanthene-9-thione ( 12 ) yielded a single 1:1 adduct in each case (Schemes). In the former case, spirocyclic 1,3-oxathiolane 17 , the product of the 1,3-dipolar cycloaddition with 2a corresponding to 3a , was isolated in only 11 % yield. It is remarkable that no 2:1 adduct was formed even in the presence of an excess of 4b. In contrast, 4b and 12 reacted smoothly to give 18 in 81 % yield; no cycloadduct of the carbonylylide 2a could be detected. The structures of cis- 3a , 13a , 15 , and 18 , as well as the structure of 14 , which is a derivative of trans- 3a , have been established by X-ray crystallography (Figs. 1–3, Table).  相似文献   

7.
Some Irradiation Experiments with 2, 1-Benzisothiazoles 2, 1-Benzisothiazole ( 1 ) on irradiation with a mercury high-pressure lamp in benzene/diethylamine yields, after acetylation, 2-acetylamino-benzaldehyde ( 3 ; Scheme 1). Similarly, irradiation of 3-chloro-2, 1-benzisothiazole ( 2 ) in benzene/diethylamine leads to a mixture of 3-dimethylamino-2, 1-benzisothiazole ( 6a ) and N, N-diethyl-thioanthranilamide ( 7a ; Scheme 2). Benzisothiazole 6a , on irradiation, is not transformed into 7a . On the other hand, when 2 is irradiated in methanol a mixture of 3-methoxy-2, 1-benzisothiazole ( 4a ) and methyl anthranilate ( 5a ; Scheme 2) is obtained. In this case, 4a on irradiation in methanol or ethanol also yields 5a . No exchange of the methoxy group in 4a is observed when the irradiation is performed in ethanolic solution. Thus, 2, 1-benzisothiazoles 1 , 2 and 4a react photochemically by N,S-bond cleavage and hydrogen-atom abstraction from the solvent (Scheme 3). 3-Chloro-2, 1-benzisothiazole ( 2 ) shows a second photoreaction, i.e. nucleophilic exchange of the chloro substituent by methanol or diethyl amine. The latter reaction can also be observed thermally, e.g. in boiling methanol in the presence of methoxide ions.  相似文献   

8.
We have developed a capillary electrophoresis (CE) method with universal fluorescent multiplex PCR to simultaneously detect the SMN1 and SMN2 genes in exons 7 and 8. Spinal muscular atrophy (SMA) is a very frequent inherited disease caused by the absence of the SMN1 gene in approximately 94% of patients. Those patients have deletion of the SMN1 gene or gene conversion between SMN1 and SMN2. However, most methods only focus on the analysis of whole gene deletion, and ignore gene conversion. Simultaneous quantification of SMN1 and SMN2 in exons 7 and 8 is a good strategy for estimating SMN1 deletion or SMN1 to SMN2 gene conversion. This study established a CE separation allowing differentiation of all copy ratios of SMN1 to SMN2 in exons 7 and 8. Among 212 detected individuals, there were 23 SMA patients, 45 carriers, and 144 normal subjects. Three individuals had different ratios of SMN1 to SMN2 in two exons, including an SMA patient having two SMN2 copies in exon 7 but one SMN1 copy in exon 8. This method could provide more information about SMN1 deletion or SMN1 to SMN2 gene conversion for SMA genotyping and diagnosis.  相似文献   

9.
The glucose‐, mannose‐, and galactose‐derived spirocyclic cyclopropylammonium chlorides 1a – 1d, 2a – 2d and 3a – 3d were prepared as potential glycosidase inhibitors. Cyclopropanation of the diazirine 5 with ethyl acrylate led in 71% yield to a 4 : 5 : 1 : 20 mixture of the ethyl cyclopropanecarboxylates 7a – 7d , while the Cu‐catalysed cycloaddition of ethyl diazoacetate to the exo‐glycal 6 afforded 7a – 7d (6 : 2 : 5 : 3) in 93–98% yield (Scheme 1). Saponification, Curtius degradation, and subsequent addition of BnOH or t‐BuOH led in 60–80% overall yield to the Z‐ or Boc‐carbamates 11a – 11d and 12a – 12d , respectively. Hydrogenolysis of 11a – 11d afforded 1a – 1d , while 12a – 12d was debenzylated to 13a – 13d prior to acidic cleavage of the N‐Boc group. The manno‐ and galacto‐isomers 2a – 2d and 3a – 3d , respectively, were similarly obtained in comparable yields (Schemes 2 and 4). Also prepared were the differentially protected manno‐configured esters 24a – 24d ; they are intermediates for the synthesis of analogous N‐acetylglucosamine‐derived cyclopropanes (Scheme 3). The cyclopropylammonium chlorides 1a – 1d, 2a – 2d and 3a – 3d are very weak inhibitors of several glycosidases (Tables 1 and 2). Traces of Pd compounds, however, generated upon catalytic debenzylation, proved to be strong inhibitors. PdCl is, indeed, a reversible, micromolar inhibitor for the β‐glucosidases from C. saccharolyticum and sweet almonds (non‐competitive), the β‐galactosidases from bovine liver and from E. coli (both non‐competitive), the α‐galactosidase from Aspergillus niger (competitive), and an irreversible inhibitor of the α‐glucosidase from yeast and the α‐galactosidase from coffee beans. The cyclopropylamines derived from 1a – 1d or 3a – 3d significantly enhance the inhibition of the β‐glucosidase from C. saccharolyticum by PdCl , lowering the Ki value from 40 μM (PdCl ) to 0.5 μM for a 1 : 1 mixture of PdCl and 1d . A similar effect is shown by cyclopropylamine, but not by several other amines.  相似文献   

10.
The irradiations of 1, 1-dimethyl- (8), 1, 1-di-(tri-deuteriomethyl)- (d6– 8 ), 1, 1, 2, 2-tetramethyl- ( 9 ) and cis- and trans-1, 2-dimethyl-1, 2-dihydronaphthalenes (cis- and trans- 10 ) were investigated in 2, 2-dimethylbutane/pentane at ?100° using a mercury high-pressure lamp, and with mercury high- and low-pressure lamps at room temperature. The results were compared with one another, and those of the individual compounds are collected in schemes 2 and 4–7. The most important results are the following: 1. The 1, 2-dihydronaphthalenes undergo a conrotatory ring opening to the o-quinodimethanes on irradiation with high- or low-pressure lamps at room temperature or at ?100°. Thermal reactions ([1, 7a]H-shifts, electrocyclisations) are suppressed at ?100°. The o-quinodimethanes formed from 8 (scheme 2), 9 (scheme 5) or cis- 10 (scheme 6) undergo on irradiation with the high-pressure lamp, [1, 5]H-shifts or photochemical Diels-Alder reactions after renewed photochemical excitation, to yield the benzobicyclo[3.1.0]hex-2-ene derivatives. These Diels-Alder reactions do not proceed stereospecifically, and therefore are not orbital symmetry controlled reactions. 2. If the 1, 2-dihydronaphthalenes are irradiated at room temperature with either a high- or a low-pressure lamp, then the initially formed o-quinodimethanes undergo thermal [1, 7a]H-shifts, in preference to all other reactions, as long as this is sterically possible; the resulting products can undergo secondary photochemical transformations. Such o-quinodimethanes are formed on irradiation of 8, 9 and cis- 10 . From trans- 10 , an o-quinodimethane mixture is formed, of which one component (cis, cis- 22 ) undergoes thermal [1, 7a] H-shifts, while the other (trans, trans- 22 ) suffers a thermal disrotatory electrocyclisation to give cis- 10 . If a high-pressure lamp is used in the last experiment, then the competing photochemical Diels-Alder cyclisation to bicyclic compounds of the type 23 (scheme 7) can result in the trans, trans- 22 . As was shown by Salisbury [3], and confirmed by ourselves in other cases [2], photochemical Diels-Alder reactions or [1, 5]H-shifts in the o-quinodimethanes require light of wavelength ? 400 nm (high-pressure lamp). The present photochemical investigations amplify and confirm our earlier conclusions concerning the photochemistry of the 1, 2-dihydronaphthalenes [2].  相似文献   

11.
Sharpless epoxidation of (E)-1-(trimethylsilyl)[1-2H1]oct-1-en-3-o1 ( 3a ) yielded (1S,2S,3S)- and (1R,2R,3R)-1-(trimethylsilyl)-1,2-epoxy[1-2H1]octan-3-ols ( 4a and 4b , resp.) which were converted in three steps into (S)- and (R)-fluoro[ 2H1]acetic acid ( 7a and 7b , resp.) in good yields. Their high isotopic and optical purity was established by 1H- and 19F-NMR, mass, and circular-dichroism spectroscopy.  相似文献   

12.
The factors responsible for the diastereoselective formation of the 6-endo-hydroxybicyclo[2.2.2]octan-2-one by acid-catalyzed intramolecular aldol reaction of 3-oxocyclohexaneacetaldehydes have been investigated. This study, carried out on (1SR,4RS,6RS)-6-hydroxybicyclo[2.2.2]octan-2-one 1a , (1SR,4RS,6SR)-6-hydroxybicyclo[2.2.2]octan-2-one 1b , and 3,3-(ethylenedioxy)cyclohexaneacetaldehyde 2a , allowed to demonstrate the absence of intramolecular H-bonding in 1a as a stabilizing factor, and to ascertain the presence of unfavorable steric interactions in 1b .  相似文献   

13.
Spectra and chemical transformations allow to establish the gross structure 6,7-epoxy-4,7-dimethyl-l-oxa-spiro[4.4]non-3-en-2-one for adriadysiolide ( 1 ), the first monoterpenoid isolated from a marine sponge, a Dysidea sp. of the Adriatic Sea. Its configuration 5R*, 6S*, 7S* as given in 1a is derived from diastereoselective total syntheses of both 1a and its diastereoisomer 1b via stereochemically predictable peracid epoxidations of olefinic precursors. Thus, OH assistance in allylic alcohol 8 leads to oxirane 13 which is subjected to methyl cuprate conjugate addition to give epiadriadysiolide ( 1b ), whilst electronic deactivation by a neighboring heterocyclic O-atom in intermediate 5 , derived from 8 mainly leads to adriadysiolide ( 1a ). Comparative 1H-NMR shift-reagent effects with 1a and 1b , evaluated with the aid of molecular-mechanics calculations, support these conclusions.  相似文献   

14.
Zinc enolates derived from 1-aryl-2,2-dibromoalkanones react with N-cyclohexyl-2-oxochromene-3-carboxamides to give N-cyclohexyl-1-alkyl-1-aroyl-2-oxo-1a,7b-dihydrocyclopropa[c]chromene-1a-carboxamides mainly as cis isomers with respect to the substituents in positions 1 and 1a. Reactions of the same zinc enolates with N-benzyl-2-oxochromene-3-carboxamide and N-benzyl-6-bromo-2-oxochromene-3-carboxamide lead to formation of 1-aryl-2-benzyl- and 1-aryl-2-benzyl-6-bromo-1-hydroxy-9c-alkyl-1,2,9b,9c-tetrahydro-5-oxa-2-azacyclopenta[2,3]cyclopropa[1,2-a]naphthalene-3,4-diones. The reaction of zinc enolates with N-aryl-2-oxochromene-3-carboxamides in a weakly polar solvent (diethyl ether or ethyl acetate) affords mixtures of cis-N-aryl-1-aroyl-1-alkyl-2-oxo-1a,7b-dihydrocyclopropa[c]chromene-1a-carboxamides and their cyclic isomers, 9c-alkyl-1,2-diaryl-1-hydroxy-1,2,9b,9c-tetrahydro-5-oxa-2-azacyclopenta[2,3]cyclopropa[1,2-a]naphthalene-3,4-diones, the latter prevailing. N-Substituted 1-alkyl-1-aroyl-2-oxo-1a,7b-dihydrocyclopropa[c]chromene-1a-carboxamides in which the aroyl group on C1 and the carboxamide group on C1a are arranged trans are formed by reactions of zinc enolates with the corresponding 2-oxochromene-3-carboxamides in the presence of hexamethylphosphoric triamide.__________Translated from Zhurnal Organicheskoi Khimii, Vol. 41, No. 4, 2005, pp. 539–546.Original Russian Text Copyright © 2005 by V. Shchepin, Silaichev, R. Shchepin, Ezhikova, Kodess.  相似文献   

15.
Chenopodium album is a weedy annual plant in the genus Chenopodium. C. album pollen represents a predominant allergen source in Iran. The main C. album pollen allergens have been described as Che a 1, Che a 2, and Che a 3. The aim of this work was to clone the Che a 1 in Escherichia coli to establish a system for overproduction of the recombinant Che a 1 (rChe a 1). In order to clone this allergen, the pollens were subjected to RNA extraction. A full-length fragment encoding Che a 1 was prepared by polymerase chain reaction amplification of the first-strand cDNA synthesized from extracted RNA. Cloning was carried out by inserting the cDNA into the pET21b (+) vector, thereafter the construct was transformed into E. coli Top10 cells and expression of the protein was induced by IPTG. The rChe a 1 was purified using histidine tag in recombinant protein by means of Ni–NTA affinity chromatography. IgE immunoblotting, ELISA, and inhibition ELISA were done to evaluate IgE binding of the purified protein. In conclusion, the cDNA for the major allergen of the C. album pollen, Che a 1, was successfully cloned and rChe a 1 was purified. Inhibition assays demonstrated allergic subjects sera reacted with rChe a 1 similar to natural Che a 1 in crude extract of C. album pollen. This study is the first report of using the E. coli as a prokaryotic system for Che a 1 cloning and production of rChe a 1.  相似文献   

16.
A series of neutral gelators and cationic amphiphiles derived from 1,2 diphenylethylenediamine (I) and 1,2-cyclohexanediamine (II) was synthesised. Helical silica nanotubes were prepared utilising these organic gelators through sol-gel polycondensation of tetraethoxy silane, (TEOS-silica source). Right- and left-handed helical nanotubes respectively were obtained from a 1: 1 mass mixture of optically active, (1S,2S)-III-(1S,2S)-V neutral gelator and (1S,2S)-IV-(1S,2S)-VI cationic amphiphile and a 1: 1 mass mixture of optically active, (1R,2R)-III-(1R,2R)-V neutral gelator and (1R,2R)-IV-(1R,2R)-VI cationic amphiphile, indicating that the handedness of the helical nanotubes varied with the change in the neutral gelator precursors used. The nanotubes were characterised by SEM images.  相似文献   

17.
A reinvestigation of 2-methylacetophenone ( 1 ) by ns flash photolysis has provided detailed evidence for the reaction sequence of photoenolization. The triplet reaction proceeds adiabatically from the lowest excited triplet state of the ketone, 3 K (1) , to the enol excited triplet state, 3 E (1) , which decays both to enol and ketone ground state. The Z- and E-isomers of the photoenol, Z- E (1) and E- E (1) are formed in about equal yield by the triplet pathway, while direct enolization from the lowest excited singlet state of 1 yields (predominantly) the Z-isomer. Intramolecular reketonization from Z- E (1) to 1 proceeds at a rate of ca. 108s?1 in cyclohexane, but can be retarded to ca. 104s?1 in hydrogen-bond-acceptor solvents. The proposed mechanism is summarized in Scheme 1 and rationalized on the basis of a state correlation diagram, Scheme 2. 3,3,6,8-Tetramethyl-1-tetralone ( 2 ) was used as a reference compound with fixed conformational position of the carbonyl group, and some results from a brief investigation of 2,4-dimethylbenzophenone ( 3 ) are also reported.  相似文献   

18.
Reaction of 3-Amino-2H-azirines with Salicylohydrazide 3-Amino-2H-azirines 1a–g react with salicylohydrazide ( 7 ) in MeCN at 80° to give 2H, 5H-1,2,4-triazines 10 , 1,3,4-oxadiazoles 12 and, in the case of 1d , 1,2,4-triazin-6-one 11a (Scheme 3). The precursor of these heterocycles, the amidrazone of type 9 , except for 9c and 9g , which could not be isolated, has been found as the main product after reaction of 1 and 7 in MeCN at room temperature. 3-(N-Methyl-N-phenylamino)-2-phenyl-2H-azirin ( 1g ) reacts with 7 to give mainly the aromatic triazines 15b1 and 15b2 . In this case, two unexpected by-products, 16 and salicylamide ( 17 ), occurred, probably by disproportionation of a 1:1 adduct from 1g and 7 (Scheme 8). Oxidation of 10f with DDQ leads to the triazine 15a . The structure of 10c, 11a, 12c, 13 (by-product in the reaction of 1b and 7 ), the N′-phenylureido derivative 14 of 9d (Scheme 4) as well as 15b2 has been established by X-ray crystallography. The ratio of 10/12 as a function of substitution pattern in 1 and solvent has been investigated (Tables 1, 3, 4, and 7). A mechanism for the formation of 10 and 12 is proposed in Scheme 7.  相似文献   

19.
The thermal reaction of trans‐1‐methyl‐2,3‐diphenylaziridine (trans‐ 1a ) with aromatic and cycloaliphatic thioketones 2 in boiling toluene yielded the corresponding cis‐2,4‐diphenyl‐1,3‐thiazolidines cis‐ 4 via conrotatory ring opening of trans‐ 1a and a concerted [2+3]‐cycloaddition of the intermediate (E,E)‐configured azomethine ylide 3a (Scheme 1). The analogous reaction of cis‐ 1a with dimethyl acetylenedicarboxylate ( 5 ) gave dimethyl trans‐2,5‐dihydro‐1‐methyl‐2,5‐diphenylpyrrole‐3,4‐dicarboxylate (trans‐ 6 ) in accord with orbital‐symmetry‐controlled reactions (Scheme 2). On the other hand, the reactions of cis‐ 1a and trans‐ 1a with dimethyl dicyanofumarate ( 7a ), as well as that of cis‐ 1a and dimethyl dicyanomaleate ( 7b ), led to mixtures of the same two stereoisomeric dimethyl 3,4‐dicyano‐1‐methyl‐2,5‐diphenylpyrrolidine‐3,4‐dicarboxylates 8a and 8b (Scheme 3). This result has to be explained via a stepwise reaction mechanism, in which the intermediate zwitterions 11a and 11b equilibrate (Scheme 6). In contrast, cis‐1,2,3‐triphenylaziridine (cis‐ 1b ) and 7a gave only one stereoisomeric pyrrolidine‐3,4‐dicarboxylate 10 , with the configuration expected on the basis of orbital‐symmetry control, i.e., via concerted reaction steps (Scheme 10). The configuration of 8a and 10 , as well as that of a derivative of 8b , were established by X‐ray crystallography.  相似文献   

20.
The acid‐catalyzed reaction between formaldehyde and 1H‐indene, 3‐alkyl‐ and 3‐aryl‐1H‐indenes, and six‐membered‐ring substituted 1H‐indenes, with the 1H‐indene/CH2O ratio of 2 : 1, at temperatures above 60° in hydrocarbon solvents, yields 2,2′‐methylenebis[1H‐indenes] 1 – 8 in 50–100% yield. These 2,2′‐methylenebis[1H‐indenes] are easily deprotonated by 2 equiv. of BuLi or MeLi to yield the corresponding dilithium salts, which are efficiently converted into ansa‐metallocenes of Zr and Hf. The unsubstituted dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[1H‐inden‐1‐yl]}zirconium ([ZrCl2( 1′ )]) is the least soluble in organic solvents. Substitution of the 1H‐indenyl moieties by hydrocarbyl substituents increases the hydrocarbon solubility of the complexes, and the presence of a substituent larger than a Me group at the 1,1′ positions of the ligand imparts a high diastereoselectivity to the metallation step, since only the racemic isomers are obtained. Methylene‐bridged ‘ansa‐zirconocenes’ show a noticeable open arrangement of the bis[1H‐inden‐1‐yl] moiety, as measured by the angle between the planes defined by the two π‐ligands (the ‘bite angle’). In particular, of the ‘zirconocenes’ structurally characterized so far, the dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[4,7‐dimethyl‐1H‐inden‐1‐yl]}zirconium ([ZrCl2( 5′ )] is the most open. The mixture [ZrCl2( 1′ )]/methylalumoxane (MAO) is inactive in the polymerization of both ethylene and propylene, while the metallocenes with substituted indenyl ligands polymerize propylene to atactic polypropylene of a molecular mass that depends on the size of the alkyl or aryl groups at the 1,1′ positions of the ligand. Ethene is polymerized by rac‐dichloro{(1,1′,2,2′,3,3′,3a,3′a,7a,7′a‐η)‐2,2′‐methylenebis[1‐methyl‐1H‐inden‐1‐yl]}zirconium ([ZrCl2( 2′ )])/MAO to polyethylene waxes (average degree of polymerization ca. 100), which are terminated almost exclusively by ethenyl end groups. Polyethylene with a high molecular mass could be obtained by increasing the size of the 1‐alkyl substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号