首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To avoid the harmful effects of metallic residues in poly(1,4‐dioxan‐2‐one) (PPDO) for medical applications, the enzymatic polymerization of 1,4‐dioxan‐2‐one (PDO) was carried out at 60 °C for 15 h with 5 wt % immobilized lipase CA. The lipase CA, derived from Candida antarctica, exhibited especially high catalytic activity. The highest weight‐average molecular weight (Mw = 41,000) was obtained. The PDO polymerization by the lipase CA occurred because of effective enzyme catalysis. The water component appeared to act not only as a substrate of the initiation process but also as a chain cleavage agent. A slight amount of water enhanced the polymerization, but excess water depressed the polymerization. PPDO prepared by enzyme‐catalyzed polymerization is a metal‐free polyester useful for medical applications. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1560–1567, 2000  相似文献   

2.
《Electroanalysis》2005,17(23):2147-2155
A laccase biosensor, in which the enzyme was immobilized on N‐succinimidyl‐3‐thiopropionate (NSTP)‐modified gold electrodes, is reported. Two different approaches for the preparation of N‐succinimidyl‐terminated monolayers were evaluated: a) activation of a preformed 3‐mercaptopropionic acid (MPA) SAM by reaction with 1‐(3‐dimethylaminopropyl)‐ 3‐ethylcarbodiimide (EDC) and N‐hydroxysulfosuccinimide (NHS); b) assembling of dithiobisuccinimidyl propionate (DTSP). NSTP‐modified electrodes were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Biosensors prepared by covalent binding of the enzyme and by cross‐linking with glutaraldehyde atop NSTP‐modified electrodes were compared in terms of sensitivity and operational range for caffeic acid. A much better analytical performance was found using the latter approach. Variables affecting the amperometric detection (enzyme loading, pH and applied potential) were optimized. The operational stability and characteristics of functioning of the laccase biosensor in terms of repeatability of the amperometric measurements, reproducibility with different biosensors and useful lifetime, were evaluated. The kinetic parameters of the enzyme reactions and the analytical characteristics of the corresponding calibration plots were calculated for eight phenolic compounds. Limits of detection of 0.07 μM, 0.05 μM and 0.09 μM were obtained for caffeic acid, catechol and 3,4‐dihydroxyphenylacetic acid (DOPAC), respectively. The practical usefulness of the developed biosensor was evaluated by estimating the “pool” of phenolic compounds in olive oil mill wastewaters (OMW).  相似文献   

3.
A new method for high‐sensitive determination of glutamate was developed and evaluated based on CE by using dual‐enzyme co‐immobilized capillary microreactor combined with substrate recycling. The capillary microreactor was prepared by covalently co‐immobilizing glutamate dehydrogenase (GDH) and glutamic pyruvic transaminase (GPT) on the inner surface of a capillary and was characterized by SEM, ultraviolet‐visible spectroscopy, and fluorescence spectroscopy. The GDH‐GPT co‐immobilized capillary microreactor showed great stability and reproducibility. The apparent Km for glutamate with GDH‐GPT coupled reaction was determined to be 0.61±0.06 mM but 2.56±0.24 mM when only GDH was immobilized. Glutamate determination was based on on‐column monitoring UV absorption at 340 nm of the reaction product reduced nicotinamide adenine dinucleotide, of which peak area was directly related to the glutamate concentration. The response of the present co‐immobilized GDH‐GPT assay for glutamate is greatly enhanced over single enzyme system, and a 15.7‐fold improvement in sensitivity was obtained. The detection limit of the proposed method is 0.15 μM glutamate (S/N=3). Selectivity for glutamate is good over most of the 20 amino acids. Finally, this method was successfully applied to determine the glutamate content in rat plasma and serum samples.  相似文献   

4.
In this study, we immobilized enzymes by combining covalent surface immobilization and hydrogel entrapment. A model enzyme, glucose oxidase (GOX), was first covalently immobilized on the surface of silica nanoparticles (SNPs) via 3‐aminopropyltriethoxysilane (APTES), and the resultant SNP‐immobilized enzyme was physically entrapped within photopolymerized hydrogels prepared from two different molecular weights (MWs) (575 and 8000 Da) of poly(ethylene glycol)(PEG). The hydrogel entrapment resulted in a decrease in reaction rate and an increase in apparent Km of SNP‐immobilized GOX, but these negative effects could be minimized by using hydrogel with a higher MW PEG, which provides higher water content and larger mesh size. The catalytic rate of the PEG 8000 hydrogel was about ten times faster than that of the PEG 575 hydrogel because of enhanced mass transfer. Long‐term stability test demonstrated that SNP‐immobilized GOX entrapped within hydrogel maintained more than 60% of its initial activity after a week, whereas non‐entrapped SNP‐immobilized GOX and entrapped GOX without SNP immobilization maintained less than 20% of their initial activity. Incorporation of SNPs into hydrogel enhanced the mechanical strength of the hydrogel six‐fold relative to bare hydrogels. Finally, a hydrogel microarray entrapping SNP‐immobilized GOX was fabricated using photolithography and successfully used for quantitative glucose detection. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
LIN  Peng  GUO  Songlin  WANG  Yilei  WANG  Weigang  CHEN  Jinmin  JIA  Xiwei  WANG  Guodong 《中国化学》2009,27(11):2190-2196
Three immobilization modes of antigen to the polymers in the pH‐sensitive phase separation immunoassay were investigated and compared. The results showed that the immobilization mode in the presence of N‐ethyl‐N′‐(3‐dimethylaminopropyl)carbodiimide hydrochloride (EDCI) rendered the most desirable results. The immobilization efficiencies and immunological reaction activities of immobilized antigen of this mode were improved over the other two modes. The novel immobilization mode by EDCI was used in the pH‐sensitive phase separation immunoassay for rabbit IgG (Ag). In the competitive immunoassay, immobilized Ag and the standard Ag (or sample) competed for binding to a horseradish peroxidase labeled antibody at 37°C in a homogeneous format. After changing the pH to separate the polymer‐immune complex, the complex precipitate was re‐dissolved and determined by coupling with the color reaction of hydrogen peroxide and o‐phenylenediamine. The linear range of this determination was between 100–1400 ng/mL. Compared to the traditional enzyme‐linked immunosorbent assays (ELISA) using the same reactants, the proposed method was quiet fast (the time decreased from 100?120 to 30 min) and showed similar sensitivity, i.e., 6.0 ng/mL.  相似文献   

6.
The aim of this work is the preparation of DNA‐sensing architectures based on gold nanoparticles (AuNPs) in conjunction with an enzyme‐amplified detection to improve the analytical properties of genosensor. In order to assess the utility of study as DNA‐sensing devices, a thiolated DNA capture probe sequence was immobilized on the gold nanoparticle modified surface. After labeling of the biotinylated hybrid with a streptavidin‐alkaline phosphatase conjugate, the electrochemical detection of the enzymatic product was performed on the surface of a disposable electrode. Two different enzymatic substrates to detect the hybridization event were studied. In the first case, the enzyme catalyzed the hydrolysis of α‐naphthyl phosphate; the product is electroactive and has been detected by means of differential pulse voltammetry (DPV). In the second one, the enzyme catalyzed the precipitation of an insoluble and insulating product on the sensing interface. In this case, the electrochemical transduction of the hybridization process was performed by electrochemical impedance spectroscopy (EIS).  相似文献   

7.
A novel biotinylated and enzyme‐immobilized nanobio device was prepared with heterobifunctional composite latex particles. Hemispherical poly(glycidyl methacrylate‐co‐divinylbenzene)/polystyrene [P(GMA‐DVB)/PSt] particles with epoxy and hydroxyl groups were prepared by soap‐free seeded emulsion polymerization with P(GMA‐DVB) seed particles. Hydroxyl groups were introduced to PSt chain terminals in the seeded stage by adding 2‐mercaptoethanol as a chain‐transfer agent. To obtain the desired hemispherical structure particles, we studied the effects of the preswelling process, the type and amount of solvents added in the seeded polymerization step, the weight ratio of the secondary monomer (styrene) to the seed particle (M/P), and the type of initiators. Under suitable conditions, heterobifunctional P(GMA‐DVB)/PSt was obtained, which was confirmed by observing the binding of streptavidin–colloidal gold with transmission electron microscopy (TEM). To obtain biotinylated and enzyme‐immobilized particles, 5‐(N‐succinimidyloxycarbonyl)pentyl D‐biotinamide was first reacted with the hydroxyl group on the PSt domain of the particle. Pyruvate kinase (PK) was then directly immobilized to the biotinylated particles through a reaction with the epoxy group in the PGMA domain. The monolayer of PK on the latex particle surface was considered to be formed by covalent binding. The activity of immobilized PK was almost conserved, even after being stored at 4 °C for 48 days. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 562–574, 2005  相似文献   

8.
Nonsteroidal anti‐inflammatory drugs reportedly reduce the risk of developing cancer. One mechanism by which they reduce carcinogenesis involves the inhibition of the activity of cyclooxygenase‐2, an enzyme that is overexpressed in various cancer tissues. Its overexpression increases cell proliferation and inhibits apoptosis. However, selected cyclooxygenase‐2 inhibitors can also act through cyclooxygenase‐independent mechanisms. In this study, using ultrafiltration, enzyme‐immobilized magnetic beads, high‐performance liquid chromatography, and electrospray‐ionization mass spectrometry, several isoflavonoids in Trifolium pratense L. extracts were screened and identified. Semi‐preparative high‐performance liquid chromatography and high‐speed counter‐current chromatography were then applied to separate the active constituents. Using these methods, seven major compounds were identified in Trifolium pratense L. As cyclooxygenase‐2 inhibitors: rothindin, ononin, daidzein, trifoside, pseudobaptigenin, formononetin, and biochanin A, which were then isolated with >92% purity. This is the first report of the presence of potent cyclooxygenase‐2 inhibitors in Trifolium pratense L. extracts. The results of this study demonstrate that the systematic isolation of bioactive components from Trifolium pratense L., by using ultrafiltration, enzyme‐immobilized magnetic beads, semi‐preparative high‐performance liquid chromatography, and high‐speed counter‐current chromatography, represents a feasible and efficient technique that could be extended for the identification and isolation of other enzyme inhibitors.  相似文献   

9.
MOGHIMI  Ali 《中国化学》2007,25(10):1536-1541
Silica gel-loaded (E)-N-(1-thien-2'-ylethylidene)-1,2-phenylenediamine (TEPDA) phase was synthesized based on physical adsorption approaches. The stability of a chemically modified TEPDA especially in concentrated hydrochloric acid that was then used as a recycling and preconcentration reagent allowed the further uses of silica gel-loaded immobilized TEPDA phase. The application of this silica gel-loaded phase to sorption of a series of metal ions was performed by using different controlling factors such as the pH of the metal ion solution and the equilibration shaking time by the static technique. This difference was interpreted on the basis of selectivity incorporated in these sulfur containing silica gel-loaded TEPDA phases. Hg(Ⅱ) was found to exhibit the highest affinity towards extraction by these silica gel-loaded TEPDA phases. The pronounced selectivity was also confirmed by the determined distribution coefficients (Kd) of all the metal ions, showing the highest value reported for mercury(Ⅱ) extraction by the silica gel immobilized TEPDA phase. The potential applications of the silica gel immobilized TEPDA phase to selective extraction of mercury(Ⅱ) from aqueous solution were successfully accomplished and preconcentration of low concentration of Hg(Ⅱ) (30 pg·mL^-1) from natural tap water with a preconcentration factor of 200 for Hg(Ⅱ) off-line analysis was conducted by cold vapor atomic absorption analysis.  相似文献   

10.
In this work, the relationships between catalytic performances of penicillin G acylase (PGA) and the molar ratio of carrier, thermo‐sensitive tri‐block polymer, poly (N,N‐diethylacrylamide‐b‐ β‐hydroxyethyl methacrylate‐b‐glycidyl methacrylate) (PDEA‐b‐PHEMA‐b‐PGMA) were studied firstly, and result documented the optimal molar ratio was nDEA:nHEMA:nGMA = 100:47:24, which presented a suitable lower critical solution temperature (LCST) of 35°C and the activity retention ratio of 80.62% (±0.50%). Based on the suitable carrier, immobilization conditions were investigated and optimized. When pH of solution, concentration of PGA, immobilized time, and immobilization temperature were 8.0, 1/10 (m/v), 16 hours, and 36°C, respectively, enzyme loading capacity (L), enzyme activity (Ea), and activity retention ratio (Ar) of PGA arrived at the highest value of 21 223 U, 16 199 U/g, and 93.50% (±0.50%), respectively. Besides, the response rate (Rr) of immobilized PGA was the same as free PGA, the reusable stability (Rs) was 77.00% (±1.00%) after using for 11 times, which indicated that the carrier has better compatibility with L, Ar, Rs, and Rr.  相似文献   

11.
A highly sensitive amperometric biosensor for the detection of organophosphate pesticides (OPs) is developed. The biosensor was fabricated by immobilized acetylcholinesterase (AChE) on manganese (III) meso‐tetraphenylporphyrin (MnTPP) nanoparticles (NPs)‐modified glassy carbon (GC) electrode. The MnTPP NPs used in this article were synthesized by mixing solvent techniques. AChE enzyme was immobilized on the MnTPP NPs surface by conjugated with chitosan (CHIT). The electrocatalytic activity of MnTPP NPs led to a greatly improved performance for thiocholine (TCh) product detection. The developed AChE‐CHIT/MnTPPNP/GC biosensor integrated with a flow‐injection analysis (FIA) system was used to monitor trichlorfon (typical OP). A wide linear inhibition response for trichlorfon is observed in the range of 1.0 nM–1.0 mM, corresponding to 10–83% inhibition for AChE with a detection limit of 0.5 nM.  相似文献   

12.
本文以中性红为核,二氧化硅为壳,利用反相微乳液技术,通过正硅酸四乙酯的水解制备了掺杂有中性红的二氧化硅纳米粒子,并用TEM技术进行了表征。核中性红能够催化测定葡萄糖,乳酸和L-谷氨酸的反应,而壳二氧化硅不仅克服了电活性物质中性红易流失的缺点,且具有高的生物亲和性。分别与葡萄糖氧化酶、乳酸氧化酶以及L-谷氨酸氧化酶混合后,修饰在碳阵列电极表面。最后在该酶阵列电极表面滴加一层Nafion, 防止电活性物质抗坏血酸、尿酸等的干扰。该酶阵列传感器与流动注射分析技术(FIA)相结合,可应用于同时检测大鼠血样中的葡萄糖,乳酸和L-谷氨酸浓度。该方法无需通过传统的色谱柱的分离,大大简化了实验条件,为这一领域的研究提供了有效的分析方法。  相似文献   

13.
《Electroanalysis》2004,16(8):605-611
Tyrosinase was immobilized on polystyrene latex particles in order to control amounts of the enzyme. The tyrosinase‐coated latex particles were composed of the core polystyrene and four successive coating layers: polystyrene sulfonate, polyallylamine, tyrosinase and polyallylamine again, built up by the layer‐by‐layer technique. They showed catalytic currents for the enzymatic oxidation of catechol to o‐quinone. The enzyme activity per particle was evaluated as 2.3×10?7 units from UV absorption of o‐quinone. The relation between the catalytic current and the concentration of catechol leads to a Michaelis‐Menten type kinetic equation. The layer‐by‐layer method was found to have a deactivating effect on enzyme catalysis. In spite of this, the catechol oxidation current was larger than the current from free tyrosinase at a common value of enzyme units per volume. This is ascribed to strong adsorption of the latex particles on the electrode, leading to the enhancement of the local concentration of tyrosinase.  相似文献   

14.
Natural herbal medicines are an important source of enzyme inhibitors for the discovery of new drugs. A number of natural extracts such as green tea have been used in prevention and treatment of diseases due to their low‐cost, low toxicity and good performance. The present study reports an online assay of the activity and inhibition of the green tea extract of the Glucose 6‐phosphate dehydrogenase (G6PDH) enzyme using multilayer capillary electrophoresis based immobilized enzyme microreactors (CE‐IMERs). The multilayer CE‐IMERs were produced with layer‐by‐layer electrostatic assembly, which can easily enhance the enzyme loading capacity of the microreactor. The activity of the G6PDH enzyme was determined and the enzyme inhibition by the inhibitors from green tea extract was investigated using online assay of the multilayer CE‐IMERs. The Michaelis constant (Km) of the enzyme, the IC50 and Ki values of the inhibitors were achieved and found to agree with those obtained using offline assays. The results show a competitive inhibition of green tea extract on the G6PDH enzyme. The present study provides an efficient and easy‐to‐operate approach for determining G6PDH enzyme reaction and the inhibition of green tea extract, which may be beneficial in research and the development of natural herbal medicines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The ability to rapidly and efficiently digest and identify an unknown protein is of great utility for proteome studies. Identification of proteins via peptide mapping is generally accomplished through proteolytic digestion with enzymes such as trypsin. Limitations of this approach consist in manual sample manipulation steps and extended reaction times for proteolytic digestion. The use of immobilized trypsin for cleavage of proteins is advantageous in comparison with application of its soluble form. Enzymes can be immobilized on different supports and used in flow systems such as immobilized enzyme reactors (IMERs). This review reports applications of immobilized trypsin reactors in which the IMER has been integrated into separation systems such as reversed-phase liquid chromatography or capillary electrophoresis, prior to MS analysis. Immobilization procedures including supports, mode of integration into separation systems, and methods are described.  相似文献   

16.
To improve the efficiency of the use of nuclease P1, enzyme immobilization technology was applied using nuclease P1. Characterization of immobilized nuclease P1 on different supports was studied. The results showed that the optimum pH and temperature of nuclease P1 immobilized via different supports were enhanced. The immobilized enzyme was obviously stable when stored for long periods and was reusable. The best results were obtained when nuclease P1 was immobilized on chitosan nanoparticles. The nanoparticles were applied to protect the activity of nuclease P1 and improved enzyme activity by 13.17% over that of free nuclease P1 at the same conditions. The Michaelis constant Km and V max were determined for free and immobilized enzyme as well.  相似文献   

17.
《Electroanalysis》2006,18(16):1572-1577
An amperometric tyrosinase biosensor was developed via a simple and effective immobilization method using the self‐assembled monolayers (SAMs) technique. The organic monolayer film was first formed by the spontaneous assembly of thiolor sulfur compound (1,6‐hexanedithiol, HDT) from solution onto gold electrode. When these thiol‐rich surfaces were exposed to Au colloid, the sulfurs form strong bonds to gold nanoparticles, anchoring the clusters to the electrode substrate. After the assembly of gold nanoparticles layer, a new nano‐Au surface was obtained. Thus, the tyrosinase could be immobilized onto the electrode. The tyrosinase retained its activity well in such an immobilization matrix. The various experimental variables for the enzyme electrode were optimized. The resulting biosensor can reach 95% of steady‐state current within 10 s, and the trend in the sensitivity of different phenolic compounds was as follows: catechol>phenol>p‐cresol. In addition, the apparent Michaelis–Menten constant (K and the stability of the enzyme electrode were estimated.  相似文献   

18.
Thermosensitive hydrogel made up of poly(N‐isopropylacrylamide) (PNIPA)‐chitosan semi‐interpenetrating network (semi‐IPN) with ultrarapid responding rate was synthesized. Horseradish peroxidase (HRP) was then immobilized on this hydrogel that acted as an enzyme‐carrier by glutaraldehyde bridge. Polymerization of acrylamide was initiated by a redox system (hydrogen peroxide/acetylacetone (Acac)) and was catalyzed by the immobilized enzyme at room temperature. The attention was focused on the properties of the carrier‐enzyme systems. The hydrogel was proofed to be macroporous by environmental scanning electron microscope images. Swelling properties of the hydrogel such as swelling ratio and deswelling–reswelling kinetics were measured. The properties of the immobilized enzyme such as enzyme activity, storage stability, and thermostability were also studied. The immobilized enzyme could be used repeatedly. Gel permeation chromatography measurement of the resulted polyacrylamide (PAAm) showed that the molecular weight reduced as the repeated times of the immobilized enzyme catalysis increased. In conclusion, the macroporous hydrogel would be a suitable enzyme carrier for practical applications in future. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2222–2232, 2008  相似文献   

19.
The interaction between fullerene C60 and catalase enzyme was studied with a fullerene C60‐coated piezoelectric (PZ) quartz crystal sensor. The partially irreversible response of the C60‐coated PZ crystal sensor for catalase was observed by the desorption study, which implied that C60 could chemically react with catalase. Thus, immobilized fullerene C60‐catalase enzyme was synthesized and applied in determining hydrogen peroxide in aqueous solutions. An oxygen electrode detector with the immobilized C60‐catalase was also employed to detect oxygen, a product of the hydrolysis of hydrogen peroxide which was catalyzed by the C60‐catalase. The oxygen electrode/C60‐catalase detection system exhibited linear responses to the concentration of hydrogen peroxide and amount of immobilized C60‐catalase enzyme that was used. The effects of pH and temperature on the activity of the immobilized C60‐catalase enzyme were also investigated. Optimum pH at 7.0 and optimum temperature at 25 °C for activity of the insoluble immobilized C60‐catalase enzyme were found. The immobilized C60‐catalase enzyme could be reused with good repeatability of the activity. The lifetime of the immobilized C60‐catalase enzyme was long enough with an activity of 93% after 95 days. The immobilized C60‐catalase enzyme was also applied in determining glucose which was oxidized with glucose oxidase resulting in producing hydrogen peroxide, followed by detecting hydrogen peroxide with the oxygen electrode/C60‐catalase detection system.  相似文献   

20.
Acid phosphatase, an enzyme that is able to catalyze the transfer of a phosphate group from cheap pyrophosphate to alcoholic substrates, was covalently immobilized on polymethacrylate beads with an epoxy linker (Immobeads‐150 or Sepabeads EC‐EP). After immobilization 70 % of the activity was retained and the immobilized enzyme was stable for many months. With the immobilized enzyme we were able to produce and prepare D ‐glucose‐6‐phosphate, N‐acetyl‐D ‐glucosamine‐6‐phosphate, allyl phosphate, dihydroxyacetone phosphate, glycerol‐1‐phosphate, and inosine‐5′‐monophosphate from the corresponding primary alcohol on gram scale using either a fed‐batch reactor or a continuous‐flow packed‐bed reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号