首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhou  Liyue  Zhu  Rongyue  Lan  Yang  Yang  Jiayu  Sun  Yue  Hou  Yanhui  Ma  Xueqin  Liu  Yanhua 《Chromatographia》2021,84(7):623-634

Indoleamine 2,3-dioxygenase (IDO), an immune checkpoint protein, can cause the depletion of tryptophan (Trp) and accumulation of its metabolite of kynurenine (Kyn) in cancer cells, and generates the immunosuppressive microenvironment that supports tumor cell growth. A novel immunoregulatory prodrug micelle based on polyethylene glycol-derivatized an IDO-selective inhibitor of 1-methyltryptophan (1-MT), PEG-Fmoc-1-MT, was developed for inhibiting the IDO activity of the conversion of Trp to Kyn in tumor microenvironments. To investigate the 1-MT distribution and Trp/Kyn ratios in mice tumors with PEG-Fmoc-1-MT prodrug micelles treatment, a HPLC–MS/MS method for simultaneous determination of 1-MT and IDO biomakers of Trp and Kyn in mouse tumors was developed and validated. Triple-quadrupole mass spectrometry with positive electrospray ionization as source ionization in multiple reaction monitoring at m/z 219.0?→?160.1, 205.0?→?118.2, 209.0?→?146.1 and 249.3?→?148.3 was used for determination of 1-MT, Trp, Kyn and matrine (internal standard). The method demonstrated good linearity at the concentrations ranging from 10 to 10,000 ng/mL and lower limits of quantitation of 1 ng/mL for 1-MT, Trp and Kyn, respectively. The validated method was successfully applied to 1-MT tumor biodistribution and Trp/Kyn ratio studies in 4T1 tumor bearing mice i.v. with PEG-Fmoc-1-MT prodrug micelles. The mice tumors with PEG-Fmoc-1-MT prodrug micelles treatment exhibited higher 1-MT accumulation and lower Trp/Kyn ratio, in comparison with those of mice with 1-MT solution treatment. The developed PEG-Fmoc-1-MT prodrug micelles could be a promising IDO immunoregulatory prodrug micelles for cancer immunotherapy.

  相似文献   

2.
A liquid chromatography electrospray ionization tandem mass spectrometry (LC‐MS/MS) method has been developed for the determination of 5,10‐methylenetetrahydrofolate (methyleneTHF), tetrahydrofolate (THF) and 5‐methyltetrahydrofolate (methylTHF) in colorectal mucosa and tumor tissues. The folate extraction method includes homogenization, heat and folate conjugase treatment to hydrolyze polyglutamyl folate to monoglutamyl folate. Before analysis on LC‐MS/MS, simple and fast sample purification with ultrafiltration (molecular weight cut‐off membrane, 10 kDa) was performed. Folates were detected and quantified using positive electrospray. The method described in the present paper was successfully applied to determine the level of three folate monoglutamates in mucosa and tumor samples from 77 colorectal cancer patients, starting from a limited amount of tissue. The results showed that the LC‐MS/MS method has a great advantage over other previously used methods because of its high sensitivity and selectivity. Significantly higher levels of methyleneTHF and THF were found in tumor compared with matched mucosa tissues. Folate levels in adjacent mucosa were associated with tumor location, age and gender. The correlation between folate levels and tumor site further strengthens the fact that development of right‐ and left‐sided tumors follows different pathways. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Smart supramolecular vesicles constructed by host–guest interactions between “acid-degradable” acyclic cucurbit[n]uril (CB[n]) and a doxorubicin prodrug are reported. “Acid-degradable” acyclic CB[n] is a high-affinity host for several common antitumor drugs, and its degradation leads to a more dramatic decrease in binding affinity than that observed for “acid-sensitive” hosts. Supramolecular complexation between acid-degradable acyclic CB[n] and a doxorubicin prodrug resulted in the formation of negatively charged supramolecular vesicles. The prodrug strategy allowed doxorubicin to be conjugated to vesicles in a stable manner with a high drug-loading ratio of 20 %. The resulting supramolecular vesicles were responsive to tumor acidity (pH 6.5). Induced by mildly acidic conditions (pH 6.5–5.5), acid-degradable acyclic CB[n] could be degraded, and this led to a vesicle-to-micelle transition to form positively charged micelles. This transition resulted in a pH-dependent change in size and surface charge, which improved tumoral-cell uptake for doxorubicin.  相似文献   

4.
DE-310 is a macromolecular carrier conjugate containing an anti-tumor camptothecin derivative, DX-8951, which is conjugated to a water-soluble polymer via a peptide spacer. Assay methods have been developed for the determination of a polymer-bonded DX-8951 conjugate, DX-8951, and Glycyl-DX-8951 concentrations in murine Meth A tumor tissue. Free DX-8951 and Glycyl-DX-8951 were extracted from tumor tissue homogenates by protein precipitation and analyzed by LC/MS/MS (method I). Conjugated DX-8951 was isolated by solid-phase extraction after digestion with a thermolysin. The productive phenylalanyl-glycyl-DX-8951 was analyzed by LC/MS/MS (method II). The lower limits of quantitation of DX-8951, Glycyl-DX-8951, and conjugated DX-8951 were 1.36, 1.34 and 73.7 ng/g (as DX-8951 equivalent). These two methods showed satisfactory sensitivity, precision and accuracy. To study the pharmacokinetics of DE-310, it would be of great help to assay the polymer-bonded DX-8951 and its released drugs in tumor tissue.  相似文献   

5.
Because liver cancer is rarely suitable for surgery, transcatheter arterial chemoembolization (TACE) is used for palliative therapy. In this procedure, an emulsion of doxorubicin in iodized oil is injected directly into liver tumors through a catheter positioned within the artery supplying blood flow to the tumor. At present, there is limited understanding of factors affecting the delivery and dispersion of doxorubicin within treated tumors during TACE. This study addresses the development and application of an ultrahigh‐pressure liquid chromatography–tandem mass spectrometry (UHPLC‐MS‐MS) method for rapid confirmation of drug delivery after TACE in a rabbit VX2 liver cancer model. Doxorubicin levels in liver tumors were measured using UHPLC‐MS‐MS and compared with computed tomography measured levels of iodized oil, a metric used clinically to indicate drug delivery. We found that tissue drug levels determined using UHPLC‐MS‐MS did not correlate with the regional iodized oil concentration (vehicle) within tumors following TACE, suggesting that chemotherapeutic drugs like doxorubicin spread throughout tumors, and that lack of iodized oil staining in portions of a tumor does not necessarily indicate inadequate therapy during TACE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
W34 is a prodrug of FL118, and it can be converted to FL118 via a hydrolysis reaction. In this report, a highly sensitive LC–MS/MS method using a C18 column was validated and used for the simultaneous determination of W34 and FL118 in rat blood. A stepwise gradient elution with 0.1% formic acid in water and acetonitrile was employed. The assays were linear over a concentration range of 0.50–50.0 ng/ml for both W34 and FL118. The accuracy of the validation method ranged from 89.74 to 98.94% for W34 and from 88.61 to 94.60% for FL118. The precision was within 7.15% for W34 and 9.63% for FL118. Extraction recoveries of W34 were 94.56–100.49 and 87.67–106.32% for FL118. No significant matrix effects for both W34 and FL118 were observed in blood. The assay has been successfully applied to biological samples obtained from a stability and pharmacokinetic study of W34 and FL118.  相似文献   

7.
This study describes the development of simple, rapid and sensitive liquid chromatography tandem mass spectrometry method for the simultaneous analysis of doxorubicin and its major metabolite, doxorubicinol, in mouse plasma, urine and tissues. The calibration curves were linear over the range 5–250 ng/mL for doxorubicin and 1.25–25 ng/mL for doxorubicinol in plasma and tumor, over the range 25–500 ng/mL for doxorubicin and 1.25–25 ng/mL for doxorubicinol in liver and kidney, and over the range 25–1000 ng/mL for doxorubicin and doxorubicinol in urine. The study was validated, using quality control samples prepared in all different matrices, for accuracy, precision, linearity, selectivity, lower limit of quantification and recovery in accordance with the US Food & Drug Administration guidelines. The method was successfully applied in determining the pharmaco‐distribution of doxorubicin and doxorubicinol after intravenously administration in tumor‐bearing mice of drug, free or nano‐formulated in ferritin nanoparticles or in liposomes. Obtained results demonstrate an effective different distribution and doxorubicin protection against metabolism linked to nano‐formulation. This method, thanks to its validation in plasma and urine, could be a powerful tool for pharmaceutical research and therapeutic drug monitoring, which is a clinical approach currently used in the optimization of oncologic treatments.  相似文献   

8.
Sparing sensitive healthy tissue from chemotherapy exposure is a critical challenge in the treatment of cancer. The work described here demonstrates the localized in vivo photoactivation of a new chemotherapy prodrug of doxorubicin (DOX). The DOX prodrug (DOX‐PCB) was 200 times less toxic than DOX and was designed to release pure DOX when exposed to 365 nm light. This wavelength was chosen because it had good tissue penetration through a 1 cm diameter tumor, but had very low skin penetration, due to melanin absorption, preventing uncontrolled activation from outside sources. The light was delivered specifically to the tumor tissue using a specialized fiber‐optic LED system. Pharmacokinetic studies showed that DOX‐PCB had an α circulation half‐life of 10 min which was comparable to that of DOX at 20 min. DOX‐PCB demonstrated resistance to metabolic cleavage ensuring that exposure to 365 nm light was the main mode of in vivo activation. Tissue extractions from tumors exposed to 365 nm light in vivo showed the presence of DOX‐PCB as well as activated DOX. The exposed tumors had six times more DOX concentration than nearby unexposed control tumors. This in vivo proof of concept demonstrates the first preferential activation of a photocleavable prodrug in deep tumor tissue.  相似文献   

9.
This is a retrospective highlight on the publication by Ibsen and coworkers: Localized In Vivo Activation of a Photoactivatable Doxorubicin Prodrug in Deep Tumor Tissue, which appeared in a preceding issue of Photochem. Photobiol. (2013, 89:698–708). The authors describe the synthesis and properties of a novel doxorubicin (DOX) prodrug, DOX‐PCB, which contains a photocleavable linker group. Systemic administration of the prodrug to a tumor‐bearing animal followed by LED/fiber optic 365 nm light delivery allowed active DOX to be released site specifically in the tumor area. This elegant and timely study provides compelling evidence that photocleavable DOX‐PCB can eliminate many of the toxic side effects of DOX that have plagued clinical use of this highly effective antitumor drug for many years.  相似文献   

10.
A phosphate prodrug of a phenolic or alcoholic drug is isobaric with the putative sulfate metabolite of the drug. During liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of biological samples obtained after the administration of a phosphate prodrug, a product ion arising from the parent drug portion of the prodrug molecule is commonly used in selected reaction monitoring (SRM) utilized for the simultaneous quantitation of the prodrug and the in vivo generated parent drug. While the advantage of using a drug moiety‐specific LC‐SRM method is obvious, one drawback is that the sulfate metabolite will also respond to such an SRM transition since the metabolite will invariably yield the same product ion as the prodrug. Thus, the sulfate metabolite could be mistaken for the prodrug unless chromatographic separation between the two is achieved. In the absence of a reference standard for the sulfate metabolite to demonstrate chromatographic separation, it is important to establish a procedure that can ascertain the absence of the sulfate metabolite in the study samples to ensure the specificity of the method for the prodrug. To this end, we studied the MS/MS behavior of model phosphate and sulfate ester compounds and developed a procedure based on phosphate‐specific and sulfate‐specific product ions for distinguishing the phosphate prodrug from the sulfate metabolite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Using a column‐switching HPLC method previously described, we studied the behavior of some mononucleotide prodrugs (pronucleotides) of 3′‐azido‐2′,3′‐dideoxythymidine in various biological media. From UV data, this method allowed quantification of transient metabolites resulting from prodrug bioconversion. The kinetic data related to the successive steps were calculated according to pseudo‐first‐order kinetic models and optimized using mono‐ or poly‐exponential regressions. Various metabolites were identified by co‐injection with authentic samples and/or ESI‐MS coupling. The results led us to propose, for each considered pronucleotide, a global decomposition pathway ending in the selective delivery of the corresponding mononucleotide. Associated to the determination of other parameters (lipophilicity, aqueous solubility), the present study contributes to the search of suitable pharmacological properties for further in vivo evaluations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been used to directly analyze and image pharmaceutical compounds in intact tissue. The anti-tumor drug SCH 226374 was unambiguously determined in mouse tumor tissue using MALDI-QqTOFMS (QSTAR) by monitoring the dissociation of the protonated drug at m/z 695.4 to its predominant fragment at m/z 228.1. A second drug, compound A, was detected in slices of rat brain tissue following oral administration with doses ranging from 1-25 mg/kg. Quantitation of compound A from whole brain homogenates using routine high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) procedures revealed that concentrations of the drug in whole brain varied from a low of 24 ng/g to a high of 1790 ng/g. The drug candidate was successfully detected by MALDI-QqTOF in samples from each dose, covering a range of approximately two orders of magnitude. In addition, good correlation was observed between the MALDI-QqTOFMS intensities at each dose with the HPLC/MS/MS results. Thus the MALDI-MS response is proportional to the amount of drug in tissue. Custom software was developed to facilitate the imaging of small molecules in tissue using the MALDI-QqTOF mass spectrometer. Images revealing the spatial localization of SCH 226374 in tumor tissue and compound A in brain tissue were acquired.  相似文献   

13.
Mitochondrion is a promising target in cancer therapy. However, gaining access to this organelle is difficult due to the obstacles to cross the complicated mitochondrial membrane. Cell-penetrating peptides (CPPs) with mitochondrion-targeting ability, named mitochondrion-targeting peptides (MTPs), are efficient tools to deliver exogenous therapeutics into mitochondria. Herein, we report several new MTPs, which can be readily synthesized via resin-based solid-phase peptide synthesis. In particular, MTP3 (compound 5 ), consisting of three positively charged arginines and two D- and L- alternating naphthylalanines, demonstrated excellent mitochondrion-targeting ability with high Pearson's correlation coefficient, suggesting that MTP3 has good potential for mitochondrion-targeted drug delivery. As proof-of-concept, the feasibility of MTP3 was validated by the preparation of a mitochondrion-targeting prodrug (compound 17 , doxorubicin-based prodrug). This prodrug was subsequently confirmed to be specifically transported to the mitochondria of tumor cells, where it was able to release the native doxorubicin upon intracellular GSH activation, leading to mitochondrial depolarization and eventually cell death. Importantly, compound 17 showed good cytotoxicity against human tumor cells while negligible toxicity towards normal cells, indicating its potential as a potent mitochondrial medicine for targeted cancer therapy. Our study thus opens a way for engineered CPPs to be used to deliver bioactive cargos in mitochondrion-targeted cancer therapy.  相似文献   

14.
A multitargeting prodrug ( 2 ) that releases gemcitabine, oxaliplatin, and doxorubicin in their active form in cancer cells is a potent cytotoxic agent with nM IC50s; it is highly selective to cancer cells with mean selectivity indices to human (136) and murine (320) cancer cells. It effectively induces release of DAMPs (CALR, ATP & HMGB1) in CT26 cells facilitating more efficient phagocytosis by J774 macrophages than the FDA drugs or their co-administration. The viability of CT26 cells co-cultured with J774 macrophages and treated with 2 was reduced by 32 % compared to the non-treated cells, suggesting a synergistic antiproliferative effect between the chemical and immune reactions. 2 inhibited in vivo tumor growth in two murine models (LLC and CT26) better than the FDA drugs or their co-administration with significantly lower body weight loss. Mice inoculated with CT26 cells treated with 2 showed slightly better tumor free survival than doxorubicin.  相似文献   

15.
PEGylated prodrug, covalent attaching polyethylene glycol (PEG) polymer chains to therapeutic drugs, is one of the most promising techniques to improve the water-solubility, stability, and therapeutic effect of drugs. In this study, three PEGylated acid-sensitive prodrugs DOX-PEG-DOX with different molecular weights, were prepared via Schiff-base reaction between aldehyde-modified PEG and the amino groups of doxorubicin (DOX). This kind of amphiphilic polymeric prodrug could be self-assemble into nanoparticles in aqueous solution. The average particle size and morphologies of the prodrug nanoparticles under different pH conditions were observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. It turned out that the nanoparticles could be kept stable in the physiological environment, but degraded in acidic medium. Subsequently, we also investigated in vitro drug release behavior and found that the prodrug had acid-sensitive property. The cytotoxicity and intracellular uptake assays revealed that the prodrugs could rapidly internalized by HeLa or HepG2 cells to release DOX and effectively inhibited the proliferation of the tumor cells, which have the potential for use in cancer therapy.  相似文献   

16.
Carbenoxolone is a derivative of glycyrrhetinic acid found in the root of Glycyrrhiza glabra, colloquially known as licorice. It has been used as a treatment for peptic and oral ulcers. In recent years, carbenoxolone has been utilized in basic research for its ability to block gap junctional communication. Better understanding the distribution of carbenoxolone after systemic administration can lead to a better understanding of its potential sites of action. Presented is an ultra high‐performance liquid chromatography tandem mass spectrometer (UHPLC–MS/MS) method for the identification and quantification of carbenoxolone in mouse blood and brain tissue. Twenty mice were injected intraperitoneally with 25 mg/kg carbenoxolone and brain tissue and blood were collected for analysis. Blood concentrations (mean ± SD) at 15, 30, 60 and 120 min were determined to be (n = 5) 5394 ± 778, 2636 ± 836, 1564 ± 541 and 846 ± 252 ng/mL, respectively. Brain concentrations (mean ± SD) at 15, 30, 60 and 120 mins were determined to be (n = 5) 171 ± 62, 102 ± 35, 55 ± 10 and 27 ± 9 ng/g, respectively. The analysis of these specimens at the four different time points resulted in blood and brain half‐lives in mice of ~43 and 41 min, respectively. The UHPLC–MS/MS method was determined to be sensitive and robust for quantification of carbenoxolone.  相似文献   

17.
Oseltamivir (O), an ethyl ester prodrug of oseltamivir carboxylate (OC), is currently the drug of choice for avian influenza. Previous studies have found that the addition of esterase inhibitor can inhibit the metabolism of O to OC in plasma samples. The current study aims to evaluate the impact of dichlorvos on the rat plasma concentrations of O and OC and subsequent effect on their pharmacokinetics. The plasma samples of rats after oral administration of O were divided into two equal portions for treatment with/without dichlorvos. O and OC plasma concentrations were analyzed by a sensitive and specific LC/MS/MS method, using cephalexin as internal standard for both two analytes. The samples were extracted with an MCX cartridge and separated on a Nova‐Pak CN HP column eluted with a mobile phase of 0.15% formic acid in 50% methanol. The results showed that dichlorvos significantly inhibited further hydrolysis of O to OC during the period of rat plasma sample treatment. A significant difference in the pharmacokinetic parameters of O (except for Tmax and t1/2,λz) was found when the plasma samples were treated with dichlorvos. The use of dichlorvos is recommended in all rat studies which require plasma concentration determination of O and OC. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
One of the main problems of anti-cancer therapy is an insufficient differentiation between normal and malignant cells by the known anti-proliferant agents. The antibody-directed enzyme prodrug therapy is a promising approach for a selective treatment of cancer, in which a non-toxic prodrug is enzymatically converted into a highly cytotoxic drug at the surface of malignant cells by a targeted antibody–enzyme conjugate. The transformations and the stability of a very promising novel prodrug and its corresponding cytotoxic derivative were now investigated in detail by high-performance liquid chromatography (HPLC)–mass spectrometry (MS). In order to determine the time-dependent DNA alkylation efficiency and the sequence selectivity of the novel compounds, DNA binding studies using direct electrospray–Fourier transform ion cyclotron resonance–MS (ESI–FTICR–MS) have been performed. These measurements were accompanied by HPLC analyses followed by MS of the separated species to confirm the results of the direct ESI–FTICR–MS measurements. The sites of DNA alkylation could be identified unambiguously by the mass spectrometric fragmentation pattern of the alkylated oligodeoxynucleotides as well as by the results of HPLC followed by MS. A combination of all techniques applied led to a better understanding of the mode of action of the new therapeutics and might be used for an estimation of the cytotoxicity of different prodrugs and drugs since the alkylation efficiency correlates with the bioactivity of the compounds in cell culture investigations. After enzymatic cleavage of the sugar moiety, the untoxic prodrug is converted rapidly into the corresponding highly cytotoxic drug that alkylates DNA with high efficiency Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Lutz F. TietzeEmail:
  相似文献   

19.
A rapid and sensitive LC‐MS/MS method for the quantification of fenofibric acid in rat plasma was developed and validated. Plasma samples were prepared by liquid–liquid extraction with a mixture of N‐hexane–dichloromethane–isopropanol (100:50:5, v/v/v). Isocratic chromatographic separation was performed on a reversed‐phase Discovery C18 column (2.1 × 50 mm, 5 µm). The mobile phase was methanol–water–formic (75:25:0.25, v/v/v). Detection of fenofibric acid and the internal standard (IS) diclofenac acid was achieved by ESI MS/MS in the negative ion mode using m/z 317 → m/z 213 and m/z 294 → m/z 250 transitions, respectively. The method was linear from 0.005 to 1.250 µg/mL when 100 μL plasma was analyzed. The lower limit of quantification was 0.005 µg/mL. The intra‐ and inter‐day precision values were below 8.2%, and accuracy ranged from ?0.9 to 2.1% in all quality control samples. The recovery was 90.3–94.7% and 83.3% for fenofibric acid and IS, respectively. Total run time for each sample analysis was 2.5 min. The validated method was successfully applied to a pharmacokinetic study in six rats after oral administration of fenofibrate, the ester prodrug of fenofibric acid (equivalent to fenofibric acid 5 mg/kg). The method permits laboratory scientists with access to the appropriate instrumentation to perform rapid fenofibric acid determination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS) method was developed and fully validated for determination of arformoterol in rat plasma, lung and trachea tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号