首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Highly dispersed ZnO nanoparticles with variable particle sizes were successfully prepared within an amphiphilic hyperbranched polyetherpolyol matrix via decomposition of an organometallic precursor in the presence of air leading to stable nanocomposites. The high degree of stabilization during and after the synthesis by the polymer permits control over the nanoparticle size and therefore, due to the quantum‐size‐effect, the particle properties. Furthermore, these polymer‐inorganic nanocomposites can easily be dispersed in apolar solvents to yield highly transparent, stable solutions.

  相似文献   


3.
Nanofiber scaffolds of collagen have been fabricated via electrospinning using benign solvent systems as a replacement for 1,1,1,3,3,3 hexafluoro‐2‐propanol. Simple binary mixtures of phosphate‐buffered saline and ethanol have been found to be highly effective for electrospinning. FTIR spectra suggest that the triple helical structure of collagen was conserved after dissolution and electrospinning. Crosslinking of the electrospun collagen scaffolds was achieved with standard methods.

  相似文献   


4.
A ‘grafting‐from’ approach to synthesize microparticle‐supported conjugated polyelectrolyte brushes is presented. Poly(3‐bromohexylthiophene) is selectively grown from monodisperse organosilica microparticles by surface‐initiated Kumada catalyst‐transfer polycondensation (SI‐KCTP) and then ionizable amino groups are introduced by a two‐step polymer analogous transformation. Optical properties of the resulting microparticle‐supported conjugated polyelectrolyte brushes were found to be dependent on the surrounding chemical environment and thus the particles are promising materials for sensor applications.

  相似文献   


5.
In the present work, the gelatin/fibronectin affinity was evaluated using SPR, QCM and radiolabelling. The results indicate that type A gelatin films possess a higher affinity for Fn compared to type B gelatin. This is due to a combined hydrophobic and electrostatic interaction between gelatin type A and Fn. In a second part, the affinity of Fn for porous gelatin scaffolds was evaluated. The scaffolds were prepared by a cryogenic treatment and subsequent freeze‐drying yielding type I and type II scaffolds which possess different pore geometries/sizes. The results indicate that the Fn density on the scaffolds can be fine‐tuned by varying the Fn concentration, the gelatin type (A vs. B), the pore size/geometry (type I vs. type II scaffolds).

  相似文献   


6.
These studies provide evidence for the ability of a commercially available, defined, hyaluronan‐gelatin hydrogel, HyStem‐C?, to maintain both mouse embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs) in culture while retaining their growth and pluripotent characteristics. Growth curve and doubling time analysis show that mESCs and hiPSCs grow at similar rates on HyStem‐C? hydrogels and mouse embryonic fibroblasts and Matrigel?, respectively. Immunocytochemistry, flow cytometry, gene expression and karyotyping reveal that both human and murine pluripotent cells retain a high level of pluripotency on the hydrogels after multiple passages. The addition of fibronectin to HyStem‐C? enabled the attachment of hiPSCs in a xeno‐free, fully defined medium.

  相似文献   


7.
We report a combined experimental and theoretical study of micellization of block copolymer with hydrophilic nonionic corona‐forming blocks and weak polyelectrolyte (wPE) core‐forming blocks with pH‐triggered solubility in aqueous solutions. We demonstrate that in addition to micelles with neutral cores, there exist two other types of micelles with PE‐ or ionomer‐like cores, in which monovalent counterions are released or condensed on core wPE block, respectively. The transition between the two types of micelles occurred upon changes in ionization of the PE core block and resulted in nonmonotonous changes of aggregation number as a function of pH. Such micelles with stimulus responsive cores represent promising nanocarriers for controlled delivery applications.

  相似文献   


8.
A triblock copolymer, poly(ethylene glycol)–poly(propylene glycol)–poly(ethylene glycol) was end-capped by acryloyl groups using a biodegradable oligolactide as spacer, and such biodegradable amphiphilic macromers could form micelles in water. A nanogel was prepared via polymerizing macromers in a micelle, and a macroscopic physical gelation was found upon heating a concentrated aqueous nanogel suspension. Such a sol–gel transition with a chemically crosslinked nanogel as the building block was thermoreversible. While the hydrogel affords a promising injectable biomaterial; this research reveals new physics of the thermogelling mechanism of amphiphilic block copolymers.

  相似文献   


9.
This letter focuses on the first result of the preparation and the swelling behavior of a novel hybrid gelatin hydrogel with carbon nanotubes. A novel hybrid gelatin hydrogel with carbon nanotubes was synthesized by a physical mixing method. The structure of the novel hydrogel obtained was characterized by SEM. Besides, the swelling behavior of the synthesized hydrogel was measured at two different temperatures. The results indicate that carbon nanotubes added could maintain the stability of the hybrid hydrogel without cross‐linking at 37 °C. This suggests that the hybrid gelatin hydrogel with carbon nanotubes could be used in biomedical field. Besides, its application in protein separation is discussed.

SEM image of the gelatin‐MWNTs hybrid gel at 10 000 × magnification.  相似文献   


10.
Kumada catalyst‐transfer polycondensation (KCTP) is a new but rapidly developing method with great potential for the preparation of well‐defined conjugated polymers (CPs). The recently discovered chain‐growth mechanism is unique among the various transition metal‐catalyzed polycondensations, and has thus attracted much attention among researchers. Most progress is found in the areas of mechanism and external initiation via new initiators, but also the number of monomers other than thiophene that can be polymerized is steadily increasing. Accordingly, the variety of CP chain architectures is increasing as well, and a considerable contribution of KCTP toward more efficient materials can be expected in the future. This review critically focuses on very recent progress in the synthesis of CPs and the mechanism of KCTP, and is finally aimed at providing a comprehensive picture of this exciting polymerization method.

  相似文献   


11.
Summary: A series of high clay content Laponite XLS/polyacrylamide (PAAm) nanocomposite hydrogels (S‐M gels) with excellent resilience, low elastic hysteresis, and ultrahigh elongation, have been successfully synthesized. Based on our results, it is concluded that the mechanical properties of nanocomposite hydrogels probably depend to a great extent on the hydrophilicity and flexibility of the macromolecules. Moreover, it is found that the transparency during the in‐situ polymerization of S‐M gels does not change, which is quite different from clay/poly(N‐isopropylacrylamide) nanocomposite hydrogels.

Formation of nanocomposite hydrogels using Clay‐S by in‐situ polymerization.  相似文献   


12.
Solar cells comprised of nanoparticulate TiO2 porous film photosensitized with an adsorbing dye have been utilized as photoinduced charge separation systems in aqueous media with the view to forming future artificial photosynthetic systems able to create fuels from solar energy and water. The photoinduced charge separation of the sensitized TiO2 cell in a quasi‐solid, made from agarose or κ‐carrageenan, was investigated.

I–V curves under 98 mW · cm−2 irradiation of ITO/TiO2/Ru(dcbpy)2(NCS)2. Electrolyte: 0.1 M LiI/0.01 M I2 in a quasi‐solid of 0.2 wt.‐% gelatin containing a large excess of water.  相似文献   


13.
Poly(dimethylsiloxane) copolymers were synthesized directly from AA/BB monomers employing a CuAAC reaction (click chemistry) in a polyaddition approach. Using organic dialkynes and oligo(siloxane)s end‐functionalized with azide moieties it was possible to obtain siloxane‐based copolymers with TPE properties by click chemistry for the first time. As seen from DSC experiments, properties were strongly dependent on the incorporated organic comonomer.

  相似文献   


14.
The slurry homopolymerization of ethylene catalyzed by a Cp2ZrCl2/MAO catalytic system was studied. A simple kinetic model including initiation, propagation, transfer to monomer and cocatalyst, spontaneous transfer and spontaneous deactivation was developed to predict dynamic yield of polymerization and molecular weight of final products. Kinetic constants were estimated by numerical solution of polymerization kinetic model, combined with Nelder‐Mead simplex method. The model predicts that the propagation reaction has the lower activation energy in relation to chain transfer reactions which leads to decrease of molecular weight at elevated temperatures. The initiation reaction has however, the highest activation energy that results in raising the peak of reaction rate at higher temperatures.

  相似文献   


15.
The storage moduli, shear moduli and surface morphologies of poly(vinyl alcohol) (PVA) and alumina hybrid hydrogels were investigated. The storage moduli of hybrid hydrogels with higher alumina contents were found to be 1.5 times higher than those of PVA gels. This increase in modulus might be attributed to the cohesion of alumina to the PVA network.

SEM photograph of Al7 PVA/alumina hybrid hydrogel. The photograph was taken with a magnification of × 220.  相似文献   


16.
Carbon nanotube–polymer composite fibers are obtained by infiltration of a monomer liquid into aligned carbon nanotube aerogel fibers with subsequent in situ polymerization. The monomer, methyl methacrylate (MMA), was infiltrated into the aerogel fibers of multi‐walled carbon nanotubes (MWNTs) at room temperature and subsequently polymerized at 50 °C into poly(methyl methacrylate) (PMMA). Cross‐sections of the PMMA/MWNT composite fibers showed that the PMMA filled the spaces of the nanotube fibers and bound the nanotubes together. PMMA in the composite fibers exhibited local order. The resultant composite fibers with 15 wt.‐% nanotube loading exhibited a 16‐fold and a 49‐fold increase in tensile strength and Young's modulus, respectively, compared to the control PMMA.

  相似文献   


17.
A novel fluorescent nanoparticle with reversible on‐off switching properties has been synthesized. Three different wavelengths of light are used for switching‐on light, switching‐off light and excitation light, respectively. Thus, when this particle is used as a fluorescent probe by irradiation of the excitation light, the on‐off status can be maintained. We also showed that the on‐off status of the fluorescent particle even embedded in hydrogels can be remotely controlled by using two different wavelengths of light. These results promise that this kind of fluorescent particles will introduce a new concept and it will possibly be applied as a novel fluorescent probe, a photo memory, and a switching devise for photonics.

  相似文献   


18.
Macroporous scaffolds composed of chitosan and using oxidized dextran as a crosslinker are produced through cryogelation. Introducing gelatin as a third component into the structure results in the formation of mesopores in the pore walls, which are not seen if gelatin is excluded. The mesoporous structure is explained by the formation of polyelectrolyte complexes between chitosan and gelatin before crosslinking takes place. The scaffolds exhibit highly elastic properties withstanding compressions up to 60%. The in vitro biocompatibility of the cryogels is evaluated using fibroblasts from a mouse cell line (L929) and it is seen that the cells adhere and proliferate on the scaffolds. The mesoporous structure seems to have a positive effect on proliferation.

  相似文献   


19.
Chemical modification reactions of alkyne containing polyHEMA‐based macroporous network structures (cryogels) by Cu(I) catalyzed azide‐alkyne ‘click’ cycloaddition reactions and their monitoring and quantification with high‐resolution magic angle spinning (hr‐MAS) NMR spectroscopy are reported. Complete conversion is obtained when benzylazide is reacted with the grafted alkyne function, but only partial conversion is observed when using azide‐modified poly(ethylene glycol) (PEG‐N3). Subsequent addition of benzylazide consumes all remaining alkyne groups. All chemical modifications are easily monitored at each stage using hr‐MAS NMR spectroscopy. The alkyne functionality and the resulting triazole ring provide well resolved 1H resonances to monitor and quantify the progress of such ‘click’ reactions in general.

  相似文献   


20.
We study a coarse grained model of cylinder forming diblock copolymers and nano‐particles (NPs) mixture confined between Lennard–Jones hard walls. Two models for non‐selective interactions between monomers and NPs are applied. In the case of purely repulsive interactions between NPs and monomers (athermal case) strong segregation of NPs at the film surfaces and the formation of droplets of particles inside the copolymer film can be observed. For weakly attractive interactions between NPs and monomers (thermal case) formation of droplets of particles disappears and segregation on the film surfaces depend on temperature. The uptake of NPs by the copolymer film in the thermal case displays a non‐monotonic dependence on temperature which can be qualitatively explained by a mean‐field model. In both cases of non‐selective interactions NPs are preferentially localized at the interface between the microphase domains.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号