首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new chromophore has been identified in copper‐doped apatite pigments having the general composition [Sr10(PO4)6(CuxOH1?x?y)2], in which x=0.1, 0.3 and y=0.01–0.42. By using X‐ray absorption spectroscopy, low‐temperature magnetization measurements, and synchrotron X‐ray powder structure refinement, it has been shown that the oxygenated compounds contain simultaneously diamagnetic Cu1+ and paramagnetic Cu3+ with S=1. Cu3+ is located at the same crystallographic position as Cu1+, being linearly coordinated by two oxygen atoms and forming the OCuO? anion. The Raman spectroscopy study of [A10(PO4)6(CuxOH1?x?y)2,], in which A=Ca, Sr, Ba, reveals resonance bands at 651–656 cm?1 assigned to the symmetric stretching vibration (ν1) of OCuO?. The strontium apatite pigment exhibits a strong paramagnetic anisotropy with an unprecedentedly large negative zero‐field splitting parameter (D) of ≈?400 cm?1. The extreme magnetic anisotropy causes slow magnetization relaxation with relaxation times (τ) up to 0.3 s at T=2 K, which relates the compounds to single‐ion magnets. At low temperature, τ is limited by a spin quantum‐tunneling, whereas at high temperature a thermally activated relaxation prevails with Ueff≈48 cm?1. Strong dependence of τ on the paramagnetic center concentration at low temperature suggests that the spin‐spin relaxation dominates in the spin quantum‐tunneling process. The compound is the first example of a d‐metal‐based single‐ion magnet with S=1, the smallest spin at which an energy barrier arises for the spin flipping.  相似文献   

2.
Three unusual three‐dimensional (3D) tetrazine chromophore‐based metal–organic frameworks (MOFs) {(Et4N)[WS4Cu3(CN)2(4,4′‐pytz)0.5]}n ( 1 ), {[MoS4Cu4(CN)2(4,4′‐pytz)2] ? CH2Cl2}n ( 2 ), and {[WS4Cu3(4,4′‐pytz)3] ? [N(CN)2]}n ( 3 ; 4,4′‐pytz=3,6‐bis(4‐pyridyl)tetrazine) have been synthesized and characterized by using FTIR and UV/Vis spectroscopy, elemental analysis, powder X‐ray diffraction, gel permeation chromatography, steady‐state fluorescence, and thermogravimetric analysis; their identities were confirmed by single‐crystal X‐ray diffraction studies. MOF 1 possesses the first five‐connected M/S/Cu (M=Mo, W) framework with an unusual 3D (44?66) topology constructed from T‐shaped [WS4Cu3]+ clusters as nodes and single CN?/4,4′‐pytz bridges as linkers. MOF 2 features a novel 3D MOF structure with (420?68) topology, in which the bridging 4,4′‐pytz ligands exhibit unique distorted arch structures. MOF 3 displays the first 3D MOF structure based on flywheel‐shaped [WS4Cu3]+ clusters with a non‐interpenetrating honeycomb‐like framework and a heavily distorted “ACS” topology. Steady‐state fluorescence studies of 1 – 3 reveal significant fluorescence emissions. The nonlinear optical (NLO) properties of 1 – 3 were investigated by using a Z‐scan technique with 5 ns pulses at λ=532 nm. The Z‐scan experimental results show that the π‐delocalizable tetrazine‐based 4,4′‐pytz ligands contribute to the strong third‐order NLO properties exhibited by 1 – 3 . Time‐dependent density functional theory studies afforded insight into the electronic transitions and spectral characterization of these functionalized NLO molecular materials.  相似文献   

3.
Modern applications of 2D NMR spectroscopy to diagnostic screening, metabolomics, quality control, and other high‐throughput applications are often limited by the time‐consuming sampling requirements along the indirect time domain t 1. 2D total correlation spectroscopy (TOCSY) provides unique spin connectivity information for the analysis of a large number of compounds in complex mixtures, but standard methods typically require >100 t 1 increments for an accurate spectral reconstruction, rendering these experiments ineffective for high‐throughput applications. For a complex metabolite mixture it is demonstrated that absolute minimal sampling (AMS), based on direct fitting of resonance frequencies and amplitudes in the time domain, yields an accurate spectral reconstruction of TOCSY spectra using as few as 16 t 1 points. This permits the rapid collection of homonuclear 2D NMR experiments at high resolution with measurement times that previously were only the realm of 1D experiments.  相似文献   

4.
Two 5‐methyl‐tetrazolate (mtz)‐based paramagnetic metal coordination polymers, {[Cu2(H2O)2(mtz)(μ3‐OH)(nip)] · H2O}n ( 1 ) and [Cu(H2O)(mtz)2]n ( 2 ), were obtained in the presence and absence of aromatic 5‐nitroisophathalate (nip2–) coligand by varying the preparation methods. Structural determinations reveal that 1 is a three‐dimensional (3D) framework with corner‐sharing triangular ribbons infinitely extended by ditopic nip2– connectors. In contrast, 2 is a coplanar (4,4) layer constructed from square‐pyramidal CuII ions and μ‐N1,N4‐mtz linkers, which is further assembled into a 3D supramolecular network by interlayer hydrogen‐bonding interactions. Magnetically, spin‐frustrated antiferromagnetic ordering is observed in the 3D framework of 1 and canted antiferromagnetic behavior with a slight spin‐flop transition is presented in 2 , which are structurally resulting from the locally Δ‐ribbon in 1 and asymmetric magnetic superexchange mediated by the μ‐N1,N4‐mtz bridge of 2 .  相似文献   

5.
6.
A bis(NiII‐porphyrinyl)aminyl radical with meso‐C6F5 groups was prepared as a spin‐delocalized stable aminyl radical with a doublet spin state. Upon addition of pyridine, both NiII centers became hexacoordinated by accepting two axial pyridines, which triggered a spin‐state change of the NiII centers from diamagnetic (S=0) to paramagnetic (S=1). The resulting high‐spin NiII centers interact with the aminyl radical ferromagnetically to give rise to an overall sextet state (S=5/2). Importantly, this coordination‐induced spin‐state switching can be conducted in a reversible manner, in that washing of the high‐spin radical with aqueous hydrochloric acid regenerates the original doublet radical in good yield.  相似文献   

7.
We have determined by polarized neutron diffraction (PND) the low‐temperature molecular magnetic susceptibility tensor of the anisotropic low‐spin complex PPh4[FeIII(Tp)(CN)3]?H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo‐axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the FeIII ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear‐cut way to establish magneto‐structural correlations in paramagnetic molecular complexes.  相似文献   

8.
The potential of coupling HPLC separation methodology to on‐line high resolution nuclear magnetic resonance (NMR) spectroscopy has been demonstrated with a mixture of nine aporphine alkaloids. A loop storage procedure after separation has facilitated the identification of closely eluted peaks (α = k2/k1 = 1.01 and Δv = 0.37 min = 367 μL). These were collected off‐line and identified by a 1D 1H NMR spectrum. For this purpose an automated procedure has been implemented which includes the use of shaped pulses, multiple solvents suppression and 13C satellite suppression of acetonitrile.  相似文献   

9.
Magnetic anisotropy is the key element in the construction of single‐ion magnets, a kind of nanomagnets for high‐density information storage. This works describes an unusual large easy‐plane magnetic anisotropy (with a zero‐field splitting parameter D of +40.2 cm?1), mainly arising from the second‐order spin‐orbit coupling effect in a trigonal‐planar CoII complex [Li(THF)4][Co(NPh2)3], revealed by combined studies of magnetism, high frequency/field electron paramagnetic resonance spectroscopy, and ab initio calculations. Meanwhile, the field‐induced slow magnetic relaxation in this complex was mainly attributed to the Raman process.  相似文献   

10.
2,7‐TMPNO (4,5,9,10‐tetramethoxypyrene‐2,7‐bis(tert‐butylnitroxide)) was found to exist in semi‐quinoid form with unprecedented strong intramolecular magnetic exchange interaction of 2 J/kB=1185 K operating over a distance of 10 Å. Structural transformations with the activation energy of ΔEeq=949 K were observed by varying the temperature, from more quinoid structure at low temperature to more biradicaloid structure at higher temperature. Moreover, this molecule undergoes a transient spin transition from singlet to polarized triplet state upon photoexcitation revealed by TREPR spectroscopy. The spin Hamiltonian parameters were determined to be S=1, g=2.0065, D=?0.0112 cm?1, and E=?0.0014 cm?1 by spectral simulation with the hybrid Eigenfield/exact diagonalization method.  相似文献   

11.
The UV (λ>305 nm) photolysis of triazide 3 in 2‐methyl‐tetrahydrofuran glass at 7 K selectively produces triplet mononitrene 4 (g=2.003, DT=0.92 cm?1, ET=0 cm?1), quintet dinitrene 6 (g=2.003, DQ=0.204 cm?1, EQ=0.035 cm?1), and septet trinitrene 8 (g=2.003, DS=?0.0904 cm?1, ES=?0.0102 cm?1). After 45 min of irradiation, the major products are dinitrene 6 and trinitrene 8 in a ratio of ~1:2, respectively. These nitrenes are formed as mixtures of rotational isomers each of which has slightly different magnetic parameters D and E. The best agreement between the line‐shape spectral simulations and the experimental electron paramagnetic resonance (EPR) spectrum is obtained with the line‐broadening parameters Γ(EQ)=180 MHz for dinitrene 6 and Γ(ES)=330 MHz for trinitrene 8 . According to these line‐broadening parameters, the variations of the angles Θ in rotational isomers of 6 and 8 are expected to be about ±1 and ±3°, respectively. Theoretical estimations of the magnetic parameters obtained from PBE/DZ(COSMO)//UB3LYP/6‐311+G(d,p) calculations overestimate the E and D values by 1 and 8 %, respectively. Despite the large distances between the nitrene units and the extended π systems, the zero field splitting (zfs) parameters D are found to be close to those in quintet dinitrenes and septet trinitrenes, where the nitrene centers are attached to the same aryl ring. The large D values of branched septet nitrenes are due to strong negative one‐center spin–spin interactions in combination with weak positive two‐center spin–spin interactions, as predicted by theoretical considerations.  相似文献   

12.
Three novel sandwich‐type polyoxotungstates ( 1 – 3 ) were synthesized in good yield using an in‐situ conventional solution synthesis method by reaction in aqueous media below 80 °C. Compounds 1 – 3 represent the first structurally characterized β‐B‐BiW9 sandwich‐type polyoxometalates with triethanolamine cations. All three compounds have the same building unit [(X(H2O)3)2(X0.5W0.5O)2(β‐B‐BiW9O33)2)]10– [X = MnII ( 1 ), CoII ( 2 ), NiII ( 3 )]. The adjacent units of 1 or 2 are joined by Na+ cations in different ways to construct 1D chains or 2D sheets. A 3D supramolecular structure is further formed by hydrogen bond interactions among water molecules and protonated triethanolamine cations. Meanwhile only compound 3 shows a 0D structure. The compounds were characterized by elemental analysis, IR spectroscopy, TG analysis, and single‐crystal X‐ray diffraction. Magnetic measurements on a sample of 1 show the presence of paramagnetic interactions.  相似文献   

13.
The paramagnetic complexes formed in Friedel‐Crafts alkylation reaction systems are invistigated by electron spin resonance (ESR) spectroscopy, in room temperature ionic liquids system 1‐butyl‐3‐methyl‐limidazolium chloride‐aluminium chloride ([bmim]Cl‐AlCl3). The results indicate that ESR spectra observed are due to polycyclic aromatic radical cations formed from their parent hydrocarbons. ESR spectrum of spin adduct is obtained in an ionic liquid system composed of [bmim]Cl‐AlCl3. In acidic solution the 14N hyperfine coupling constant of 4‐oxo‐TEMPO, 2.15 mT, is appreciably larger due to an adduct formed with AlCl3.  相似文献   

14.
1H and 13C pNMR properties of bis(salicylaldoximato)copper(II) were studied in the solid state using magic‐angle‐spinning NMR spectroscopy and, for the isolated complex and selected oligomers, using density‐functional theory at the PBE0‐ //PBE0‐D3 level. Large paramagnetic shifts are observed, up to δ(1H)=272 ppm and δ(13C)=1006 ppm (at 298 K), which are rationalised through spin delocalisation from the metal onto the organic ligand and the resulting contact shifts arising from hyperfine coupling. The observed shift ranges are best reproduced computationally using exchange‐correlation functionals with a high fraction of exact exchange (such as PBE0‐ ). Through a combination of experimental techniques and first‐principles computation, a near‐complete assignment of the observed signals is possible. Intermolecular effects on the pNMR shifts, modelled computationally in the dimers and trimers through effective decoupling between the local spins via A‐tensor and total spin rescaling in the pNMR expression, are indicated to be small. Addition of electron‐donating substituents and benzannelation of the organic ligand is predicted computationally to induce notable changes in the NMR signal pattern, which suggests that pNMR spectroscopy can be a sensitive probe for the spin distribution in paramagnetic phenolic oxime copper complexes.  相似文献   

15.
Carboxy‐substituted trityl (triarylmethyl) radicals are valuable in vivo probes because of their stability, narrow lines, and sensitivity of their spectroscopic properties to oxygen. Amino‐substituted trityl radicals have the potential to monitor pH in vivo, and the suitability for this application depends on spectral properties. Electron spin relaxation times T1 and T2 were measured at X‐band for the protonated and deprotonated forms of two amino‐substituted triarylmethyl radicals. Comparison with relaxation times for carboxy‐substituted triarylmethyl radicals shows that T1 exhibits little dependence on protonation or the nature of the substituent, which makes it useful for measuring O2 concentration, independent of pH. Insensitivity of T1 to changes in substituents is consistent with the assignment of the dominant contribution to spin lattice relaxation as a local mode that involves primarily atoms in the carbon and sulfur core. Values of T2 vary substantially with pH and the nature of the aryl group substituent, reflecting a range of dynamic processes. The narrow spectral widths for the amino‐substituted triarylmethyl radicals facilitate spectral‐spatial rapid scan electron paramagnetic resonance imaging, which was demonstrated with a phantom. The dependence of hyperfine splittings patterns on pH is revealed in spectral slices through the image. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Novel 7‐substituted 6‐oxo‐6,9‐dihydro[1,2,5]selenadiazolo[3,4‐h]quinoline ( SeQ(1–6) ) and 8‐substituted 9‐oxo‐6,9‐dihydro[1,2,5]selenadiazolo[3,4‐f ]quinoline derivatives ( SeQN(1–5) ) with R7, R8 = H, COOC2H5, COOCH3, COOH, COCH3 or CN were synthesized and their spectral characteristics were obtained by UV/Vis spectroscopy. Ultraviolet A photoexcitation of the selenadiazoloquinolones in dimethylsulfoxide or acetonitrile resulted in the formation of paramagnetic species coupled with molecular oxygen activation generating the superoxide radical anion or singlet oxygen, evidenced by electron paramagnetic resonance spectroscopy. The cytotoxic/photocytotoxic impact of selenadiazoloquinolones on murine and human cancer cell lines was demonstrated using the derivative SeQ5 (with R7 = COCH3).  相似文献   

17.
Copolymerization of isobornyl methacrylate and methyl acrylate ( I/M ) is performed by atom transfer radical polymerization using methyl‐2‐bromopropionate as an initiator and PMDETA/CuBr as catalyst under nitrogen atmosphere at 70 °C. The copolymer compositions determined from 1H NMR spectra are used to determine reactivity ratios of the monomers. The reactivity ratio determined from linear Kelen–Tudos method and non‐linear error‐in‐variable method, are rI = 1.25 ± 0.10, rM = 0.84 ± 0.08 and rI = 1.20, rM = 0.82, respectively. 1D, distortion less enhancement by polarization transfer and 2D, heteronuclear single quantum coherence, and total correlation spectroscopy NMR experiments are employed to resolve highly overlapped and complex 1H and 13C{1H} NMR spectra of the copolymers. The carbonyl carbon of I and M units and methyl carbon of I unit are assigned up to triad compositional and configurational sequences, whereas β‐methylene carbons are assigned up to tetrad compositional and configurational sequences. Similarly, methine carbon of I unit is assigned up to triad level. The couplings of carbonyl carbon and quaternary carbon resonances are studied in detail using 2D hetero nuclear multiple bond correlation spectra. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
The binding of a series of substituted phenols as axial ligands onto a diiron(III)? bisporphyrin framework have been investigated. Spectroscopic characterization revealed high‐spin states of the iron centers in all of the phenolate complexes, with one exception in the 2,4,6‐trinitrophenolate complex of diiron(III)? bisporphyrin, which only stabilized the pure intermediate‐spin (S=3/2) state of the iron centers. The average Fe? N (porphyrin) and Fe? O (phenol) distances that were observed with the 2,4,6‐trinitrophenolate complex were 1.972(3) Å and 2.000(2) Å, respectively, which are the shortest and longest distances reported so far for any FeIII? porphyrin with phenoxide coordination. The alternating shift pattern, which shows opposite signs of the chemical shifts for the meta versus ortho/para protons, is attributed to negative and positive spin densities on the phenolate carbon atoms, respectively, and is indicative of π‐spin delocalization onto the bound phenolate. Electrochemical data reveals that the E1/2 value for the FeIII/FeII couple is positively shifted with increasing acidity of the phenol. However, a plot of the E1/2 values for the FeIII/FeII couple versus the pKa values of the phenols shows a linear relationship for all of the complexes, except for the 2,4,6‐trinitrophenolate complex. The large deviation from linearity is probably due to the change of spin for the complex. Although 2,4,6‐trinitrophenol is the weakest axial ligand in the series, its similar binding with the corresponding FeIII? monoporphyrin only results in stabilization of the high‐spin state. The porphyrin macrocycle in the 2,4,6‐trinitrophenolate complex of diiron(III)? bisporphyrin is the most distorted, whilst the “ruffling” deformation affects the energy levels of the iron d orbitals. The larger size and weaker binding of 2,4,6‐trinitrophenol, along with heme? heme interactions in the diiron(III)? bisporphyrin, are responsible for the larger ring deformations and eventual stabilization of the pure intermediate‐spin states of the iron centers in the complex.  相似文献   

19.
A 3D lanthanide metal‐organic framework (MOF) with the formula [Dy2(L)2(H2O)2]n ( 1 ) (H3L = biphenyl‐3,4′,5‐tricarboxylic acid) was synthesized under solvothermal conditions and structurally characterized by elemental analysis, powder X‐ray diffraction analysis, infrared spectroscopy, and single‐crystal X‐ray diffraction analysis. Compound 1 features a 3D porous framework based on 1D rod‐shaped DyIII‐carboxylate chains. The efficient encapsulation and controllable release of an anticancer drug (5‐Fu) make it a promising drug delivery host. Furthermore, the GCMC simulation was used to probe the drug‐framework interaction at the atomic lever. The in vitro anti‐lung cancer activity of 1 and 5‐Fu loaded 1a were also evaluated using MTT assay.  相似文献   

20.
A thermochromic 1D spin crossover coordination (SCO) polymer [Fe(βAlatrz)3](BF4)2 ? 2 H2O ( 1? 2 H2O), whose precursor βAlatrz, (1,2,4‐triazol‐4‐yl‐propionate) has been tailored from a β‐amino acid ester is investigated in detail by a set of superconducting quantum interference device (SQUID), 57Fe Mössbauer, differential scanning calorimetry, infrared, and Raman measurements. An hysteretic abrupt two‐step spin crossover (T1/2=230 K and T1/2=235 K, and T1/2=172 K and T1/2=188 K, respectively) is registered for the first time for a 1,2,4‐triazole‐based FeII 1D coordination polymer. The two‐step SCO configuration is observed in a 1:2 ratio of low‐spin/high‐spin in the intermediate phase for a 1D chain. The origin of the stepwise transition was attributed to a distribution of chains of different lengths in 1? 2 H2O after First Order Reversal Curves (FORC) analyses. A detailed DFT analysis allowed us to propose the normal mode assignment of the Raman peaks in the low‐spin and high‐spin states of 1? 2 H2O. Vibrational spectra of 1? 2 H2O reveal that the BF4? anions and water molecules play no significant role on the vibrational properties of the [Fe(βAlatrz)3]2+ polymeric chains, although non‐coordinated water molecules have a dramatic influence on the emergence of a step in the spin transition curve. The dehydrated material [Fe(βAlatrz)3](BF4)2 ( 1 ) reveals indeed a significantly different magnetic behavior with a one‐step SCO which was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号