首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regioisomer composition of triacylglycerols (TAGs) in various vegetable oils was determined with a new liquid chromatography/tandem mass spectrometry (LC/MS/MS method). A direct inlet ammonia negative ion chemical ionization (NICI) MS/MS method was improved by adapting it to LC negative ion (NI) atmospheric pressure chemical ionization (APCI) MS/MS system using ammonia as nebulizer gas. The method is based on the preferential formation of [M–H–RCOOH–100]? ions during collision‐induced dissociation by loss of sn‐1/3 fatty acids from [M–H]? ions. Calibration curves were created from nine reference TAGs: Ala/L/L, Gla/L/L, L/L/O, L/O/O, P/O/O, P/P/O, Po/Po/V, Po/Po/O, and C/O/O. The calibration curves were used to quantify the regioisomer compositions of selected TAGs in rapeseed oil, sunflower seed oil, palm oil, black currant seed oil, and sea buckthorn pulp oil. The method discriminates the different regioisomers and the results obtained by this method were in good agreement with previous results. This proves that this new method can be used for the determination of regiospecific distribution of fatty acids in TAGs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The fragmentation of the homologous fatty acid tetraesters of pentaerythritol (C-2 to C-14) upon electron impact was investigated. The main fragment ions are [M? RCOO]+ and [M? RCOOH]+, for which cyclic acetal structures are postulated. Subsequent fragmentation was elucidated by ‘direct analysis of daughter ion’ (DADI) measurements and high resolution measurements. Esters of branched fatty acids can be distinguished from esters of n-fatty acids by characteristic ions. Isomeric esters of n-fatty acids cannot be separated by gas chromatography but identification is also possible by mass spectrometry.  相似文献   

3.
Chemical investigations of the glandular trichome exudates on the leaves of Paulownia tomentosa (Scrophulariaceae) led to the identification of the thirty acylglycerols (=glycerides) 1 – 30 , including five known ones ( 2, 3, 6, 9 , and 15 ) (Fig. 1). Spectroscopic analysis combined with GC/MS studies of the glycerides and the liberated fatty acids, in the form of trimethylsilyl ether derivatives and trimethylsilylated methyl esters, respectively, established that the constituents belonged to 1,3‐di‐O‐acetyl‐2‐O‐(fatty acyl)glycerols, 1‐O‐acetyl‐2‐O‐(fatty acyl)‐sn‐glycerols, and 2‐O‐(fatty acyl)glycerols, wherein the fatty acyl moiety was either an eicosanoyl or an octadecanoyl group bearing OH and/or AcO groups at the 3‐, 3,6‐, 3,7‐, 3,8‐, or 3,9‐positions. The 1‐O‐acetyl‐2‐O‐[(3R,6S)‐3‐(acetyloxy)‐6‐hydroxyeicosanoyl]‐sn‐glycerol ( 12 ; 20% of the total glycerides), 2‐O‐[(3R,8R)‐3,8‐bis(acetyloxy)eicosanoyl]glycerol ( 17 ; 14%), 2‐O‐[(3R,9R)‐3,9‐bis(acetyloxy)eicosanoyl]glycerol ( 18 ; 12%), and 2‐O‐[(3R)‐3‐(acetyloxy)eicosanoyl]glycerol ( 10 ; 12%) were relatively abundant constituents. The configurations of the stereogenic centers of the fatty acyl moieties were determined by 1H‐NMR analysis of the monoesters obtained from (R)‐ and (S)‐2‐(naphthalen‐2‐yl)‐2‐methoxyacetic acid ((R)‐ and (S)‐2NMA? OH and the hydroxy‐substituted fatty acid methyl esters (Fig. 2). The configuration at C(2) of the glycerol moiety of the 1‐O‐acetyl‐2‐O‐(fatty acyl)glycerols was determined to be (2S) by chemical conversion of, e.g., G‐2 (= 2 / 3 1 : 10) to (+)‐3‐O‐[tert‐butyl)diphenylsilyl]‐sn glycerol of known absolute configuration.  相似文献   

4.
The microalga Haematococcus pluvialis produces the pigment astaxanthin mainly in esterified form with a multitude of fatty acids, which results in a complex mixture of carotenol mono‐ and diesters. For rapid fingerprinting of these esters, matrix‐assisted laser desorption ionization time of flight mass spectrometry (MALDI‐TOF/TOF‐MS) might be an alternative to traditional chromatographic separation combined with MS. Investigation of ionization and fragmentation of astaxanthin mono‐ and diester palmitate standards in MALDI‐TOF/TOF‐MS showed that sodium adduct parent masses [M + Na]+ gave much simpler MS2 spectra than radical / protonated [M]+● / [M + H]+ parents. [M + Na]+ fragments yielded diagnostic polyene‐specific eliminations and fatty acid neutral losses, whereas [M]+● / [M + H]+ fragmentation resulted in a multitude of non‐diagnostic daughters. For diesters, a benzonium fragment, formed by polyene elimination, was required for identification of the second fatty acid attached to the astaxanthin backbone. Parents were forced into [M + Na]+ ionization by addition of sodium acetate, and best signal‐to‐noise ratios were obtained in the 0.1 to 1.0 mM range. This method was applied to fingerprinting astaxanthin esters in a crude H. pluvialis extract. Prior to MALDI‐TOF/TOF‐MS, the extract was fractionated by normal phase Flash chromatography to obtain fractions enriched in mono‐ and diesters and to remove pheophytin a, which compromised monoester signals. All 12 types of all‐trans esterified esters found in LC were identified with MALDI‐TOF/TOF‐MS, with the exception of two minor monoesters. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Herein we report a reversed‐phase high‐performance liquid chromatography tandem mass spectrometry (RP‐HPLC/MS/MS) method for the analysis of positional isomers of triacylglycerols (TAGs) in vegetable oils. The fragmentation behavior of [M + X]+ ions (X = NH4, Li, Na or Ag) was studied on a quadrupole‐time‐of‐flight (Q‐TOF) mass spectrometer under low‐energy collision‐induced dissociation (CID) conditions. Mass spectra that were dependent on the X+ ion and the nature and position of the acyl substituents were observed for four pairs of 'AAB/ABA'‐type TAGs, namely PPO/POP, OOP/OPO, LLO/LOL and OOL/OLO (where P is 16:0, palmitic acid; O is 18:1, oleic acid; and L is 18:2, linoleic acid). For the majority of [M + X]+ adducts, the loss of the fatty acid in the outer positions (sn‐1 or sn‐3) was favored over the loss in the central position (sn‐2), which enabled the determination of the fractional abundance of the isomers. Ratios of the intensity of fragment ions at various AAB/ABA compositions produced linear calibration curves with positive slopes, comparable to those obtained traditionally by ESI‐MS/MS of [M + NH4]+ adducts. The only exceptions were the [M + Ag]+ adducts of the PPO/POP system, which produced calibration curves with negative slopes. Sodium adducts provided the most consistent level of isomeric discrimination for the TAGs studied and also offered the most convenience in that they required no additive to the mobile phase. Therefore, calibration curve data derived from [M + Na]+ adducts were applied to the quantification of TAG regioisomers in sunflower and olive oils. The regiospecific analysis showed that palmitic acid was typically located at positions sn‐1 or sn‐3, whereas unsaturated fatty acids, oleic and linoleic acids were mostly found at the sn‐2 position. Copyright © 2010 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

6.
The cell wall of the pathogenic bacterium Streptococcus pneumoniae contains glucopyranosyl diacylglycerol (GlcDAG) and galactoglucopyranosyldiacylglycerol (GalGlcDAG). The specific GlcDAG consisting of vaccenic acid substituent at sn‐2 was recently identified as another glycolipid antigen family recognized by invariant natural killer T‐cells. Here, we describe a linear ion‐trap multiple‐stage (MSn) mass spectrometric approach towards structural analysis of GalGlcDAG and GlcDAG. Structural information derived from MSn (n = 2, 3) on the [M + Li]+ adduct ions desorbed by electrospray ionization affords identification of the fatty acid substituents, assignment of the fatty acyl groups on the glycerol backbone, as well as the location of double bond along the fatty acyl chain. The identification of the fatty acyl groups and determination of their regio‐specificity were confirmed by MSn (n = 2, 3) on the [M + NH4]+ ions. We establish the structures of GalGlcDAG and GlcDAG isolated from S. pneumoniae, in which the major species consists of a 16:1‐ or 18:1‐fatty acid substituent mainly at sn‐2, and the double bond of the fatty acid is located at ω‐7 (n‐7). More than one isomers were found for each mass in the family. This mass spectrometric approach provides a simple method to achieve structure identification of this important lipid family that would be very difficult to define using the traditional method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
8.
天然氨基甘油糖脂sn-1,2-dipalmitoyl-3-(N-palmitoyl-6-dehydroxy-6-amino-α-glucosyl)glycerol 3 和 sn-1-palmitoyl-2-myristoyl-3-(N-stearoyl-6-dehydroxy-6-amino-α-glucosyl)glycerol 4 通过简便有效的合成策略首次被合成。其关键步骤为:三氯亚胺酯糖基供体 10 与 (S)-isopropyleneglycerol 在乙醚溶液中发生糖苷化反应,立体选择性的生成3-O-(2,3,4-tri-O-benzyl-6-dehydroxy-6-benzyloxycarbonylamino-α-D- glucopyranoyl)-1,2-O-isopropylene-sn- glycerol 7。中间体 7 经过脱除丙酮叉、与不同的脂肪酸缩合、脱除保护基和选择性的在氨基上酰化,最终得到目标化合物 3 和 4。  相似文献   

9.
Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end‐groups were studied using direct analysis in real time mass spectrometry (DART‐MS). To facilitate the adduct ion formation under DART conditions, NH4Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl]? up to m/z 1100, and the deprotonated polyisobutylene succinic acid [M? H]? were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH4]+, adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl]?, product ions were absent, suggesting a simple dissociation of the precursor [M + Cl]? into a Cl? ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH4]+ ions, allowing us to obtain valuable information on the arm‐length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART‐MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Five glucosylceramides (GlcCers) were isolated by reversed phase high‐performance liquid chromatography from the MeOH extracts of a marine sponge, Haliclona (Reniera) sp., collected from the coast of Ulleung Island, Korea, and analyzed by fast atom bombardment mass spectrometry (FAB–MS) in positive‐ion mode. FAB‐mass spectra of these compounds included protonated molecules [M + H]+ and abundant sodiated molecules [M + Na]+ from a mixture of m‐NBA and NaI. The structures of these GlcCers, which were similar, were elucidated by FAB‐linked scan at constant B/E. To find diagnostic ions for their characterization, the GlcCers were analyzed by collision‐induced dissociation (CID) linked scan at constant B/E. The CID‐linked scan at constant B/E of [M + H]+ and [M + Na]+ precursor ions resulted in the formation of numerous characteristic product ions via a series of dissociative processes. The product ions formed by charge‐remote fragmentation provided important information for the characterization of the fatty N‐acyl chain moiety and the sphingoid base, commonly referred to as the long‐chain base. The product ions at m/z 203 and 502 were diagnostic for the presence of a sodiated sugar ring and β‐D ‐glucosylsphinganine, respectively. For further confirmation of the structure of the fatty N‐acyl chain moiety in each GlcCer, fatty acid methyl esters were obtained from the five GlcCers by methanolysis and analyzed by FAB–MS in positive‐ion mode. On the basis of these dissociation patterns, the structures of the five GlcCers from marine sponge were elucidated. In addition, the accurate mass measurement was performed to obtain the elemental composition of the GlcCers isolated from marine sponge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Long‐chain ferulic acid esters, such as eicosyl ferulate ( 1 ), show a complex and analytically valuable fragmentation behavior under negative ion electrospay collision‐induced dissociation ((?)‐ESI‐CID) mass spectrometry, as studied by use of a high‐resolution (Orbitrap) mass spectrometer. In a strong contrast to the very simple fragmentation of the [M + H]+ ion, which is discussed briefly, the deprotonated molecule, [M – H]?, exhibits a rich secondary fragmentation chemistry. It first loses a methyl radical (MS2) and the ortho‐quinoid [M – H – Me]‐? radical anion thus formed then dissociates by loss of an extended series of neutral radicals, CnH2n + 1? (n = 0–16) from the long alkyl chain, in competition with the expulsion of CO and CO2 (MS3). The further fragmentation (MS4) of the [M – H – Me – C3H7]? ion, discussed as an example, and the highly specific losses of alkyl radicals from the [M – H – Me – CO]‐? and [M – H – Me – CO2]‐? ions provide some mechanistic and structural insights.  相似文献   

12.
Fragmentation reactions of β‐hydroxymethyl‐, β‐acetoxymethyl‐ and β‐benzyloxymethyl‐butenolides and the corresponding γ‐butyrolactones were investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) using collision‐induced dissociation (CID). This study revealed that loss of H2O [M + H ?18]+ is the main fragmentation process for β‐hydroxymethylbutenolide (1) and β‐hydroxymethyl‐γ‐butyrolactone (2). Loss of ketene ([M + H ?42]+) is the major fragmentation process for protonated β‐acetoxymethyl‐γ‐butyrolactone (4), but not for β‐acetoxymethylbutenolide (3). The benzyl cation (m/z 91) is the major ion in the ESI‐MS/MS spectra of β‐benzyloxymethylbutenolide (5) and β‐benzyloxymethyl‐γ‐butyrolactone (6). The different side chain at the β‐position and the double bond presence afforded some product ions that can be important for the structural identification of each compound. The energetic aspects involved in the protonation and gas‐phase fragmentation processes were interpreted on the basis of thermochemical data obtained by computational quantum chemistry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
N‐Boc/Fmoc/Z‐N′‐formyl‐gem‐diaminoalkyl derivatives, intermediates particularly useful in the synthesis of partially modified retro‐inverso peptides, have been characterized by both positive and negative ion electrospray ionization (ESI) ion‐trap multi‐stage mass spectrometry (MSn). The MS2 collision induced dissociation (CID) spectra of the sodium adduct of the formamides derived from the corresponding N‐Fmoc/Z‐amino acids, dipeptide and tripeptide acids show the [M + Na‐NH2CHO]+ ion, arising from the loss of formamide, as the base peak. Differently, the MS2 CID spectra of [M + Na]+ ion of all the N‐Boc derivatives yield the abundant [M + Na‐C4H8]+ and [M + Na‐Boc + H]+ ions because of the loss of isobutylene and CO2 from the Boc protecting function. Useful information on the type of amino acids and their sequence in the N‐protected dipeptidyl and tripeptidyl‐N′‐formamides is provided by MS2 and subsequent MSn experiments on the respective precursor ions. The negative ion ESI mass spectra of these oligomers show, in addition to [M‐H]?, [M + HCOO]? and [M + Cl]? ions, the presence of in‐source CID fragment ions deriving from the involvement of the N‐protecting group. Furthermore, MSn spectra of [M + Cl]? ion of N‐protected dipeptide and tripeptide derivatives show characteristic fragmentations that are useful for determining the nature of the C‐terminal gem‐diamino residue. The present paper represents an initial attempt to study the ESI‐MS behavior of these important intermediates and lays the groundwork for structural‐based studies on more complex partially modified retro‐inverso peptides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The fragmentation pathways of deprotonated cyclic dipeptides have been studied by electrospray ionization multi‐stage mass spectrometry (ESI‐MSn) in negative mode. The results showed that the fragmentation pathways of deprotonated cyclic dipeptides depended significantly on the different substituents, the side chains of amino acid residues at the diketopiperazine ring. In the spectra of deprotonated cyclic dipeptides, the ion [M? H? substituent radical]? was firstly observed in the ESI mode. The characteristic fragment ions [M? H? substituent radical]? and [M? H? (substituent? H)]? could be used as the symbols of particular cyclic dipeptides. The hydrogen/deuterium (H/D) exchange experiment, the high‐resolution mass spectrometry (Q‐TOF) and theoretical calculations were used to rationalize the proposed fragmentation pathways and to verify the differences between the fragmentation pathways. The relative Gibbs free energies (ΔG) of the product ions and possible fragmentation pathways were estimated using the B3LYP/6–31++G(d, p) model. The results have some potential applications in the structural elucidation and interpretation of the mass spectra of homologous compounds and will enrich the gas‐phase ESI‐MS ion chemistry of cyclic dipeptides. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Autoxidation of flavan‐3‐ols was carried out in aqueous/methanol model solutions under mildly acidic conditions (pH 6.0), and these autoxidation products were analyzed by using high performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (MS/MS). The results showed that (+)‐catechins and (?)‐epicatechins generated autoxidation reaction with each other to form a series of oligomers that had the same [M ? H]? molecular ions (MS1) as those of natural procyanidins, but had completely different fragment ions (MS2). According to MS/MS analysis, the major fragments of these oligomers were derived not only from the retro‐Diels–Alder (RDA) dissociations on the C‐rings of the flavan‐3‐ol units, but also from the quinone‐methide (QM) cleavage of the interflavan linkages (IFL), and thus they were identified as B‐type dehydrodicatechins, B‐type dehydrotricatechins and A‐type dehydrotricatechins, respectively. The potential structures of their [M ? H]? molecular ions and partial fragment ions were deduced on the basis of the MS/MS characterization and the oxidation of flavan‐3‐ols in previous reports. Some specific fragment ions were found to be very useful for identifying the autoxidation oligomers (the B‐type dehydrodicatechins at m/z 393, the B‐type dehydrotricatechins at m/z 681 and the A‐type dehydrotricatechins at m/z 725). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Four pairs of positional isomers of ureidopeptides, FmocNH‐CH(R1)‐φ(NH‐CO‐NH)‐CH(R2)‐OY and FmocNH‐CH(R2)‐φ(NH‐CO‐NH)‐CH(R1)‐OY (Fmoc = [(9‐fluorenyl methyl)oxy]carbonyl; R1 = H, alkyl; R2 = alkyl, H and Y = CH3/H), have been characterized and differentiated by both positive and negative ion electrospray ionization (ESI) ion‐trap tandem mass spectrometry (MS/MS). The major fragmentation noticed in MS/MS of all these compounds is due to ? N? CH(R)? N? bond cleavage to form the characteristic N‐ and C‐terminus fragment ions. The protonated ureidopeptide acids derived from glycine at the N‐terminus form protonated (9H‐fluoren‐9‐yl)methyl carbamate ion at m/z 240 which is absent for the corresponding esters. Another interesting fragmentation noticed in ureidopeptides derived from glycine at the N‐terminus is an unusual loss of 61 units from an intermediate fragment ion FmocNH = CH2+ (m/z 252). A mechanism involving an ion‐neutral complex and a direct loss of NH3 and CO2 is proposed for this process. Whereas ureidopeptides derived from alanine, leucine and phenylalanine at the N‐terminus eliminate CO2 followed by corresponding imine to form (9H‐fluoren‐9‐yl)methyl cation (C14H11+) from FmocNH = CHR+. In addition, characteristic immonium ions are also observed. The deprotonated ureidopeptide acids dissociate differently from the protonated ureidopeptides. The [M ? H]? ions of ureidopeptide acids undergo a McLafferty‐type rearrangement followed by the loss of CO2 to form an abundant [M ? H ? Fmoc + H]? which is absent for protonated ureidopeptides. Thus, the present study provides information on mass spectral characterization of ureidopeptides and distinguishes the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The photosynthetic glycerolipids composition of algae is crucial for structural and physiological aspects. In this work, a comprehensive characterization of the photosynthetic glycerolipids of the diatom Stephanodiscus sp. was carried out by ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight mass spectrometry (UPLC-ESI-Q-TOF MS). By use of the MSE data collection mode, the Q-TOF instrument offered a very viable alternative to triple quadrupoles for precursor ion scanning of photosynthetic glycerolipids and had the advantage of high efficiency, selectivity, sensitivity and mass accuracy. Characteristic fragment ions were utilized to identify the structures and acyl compositions of photosynthetic glycerolipids. Comparing the abundance of fragment ions, it was possible to determine the position of the sn-glycerol-bound fatty acyl chains. As a result, four classes of photosynthetic glycerolipid in the extract of Stephanodiscus sp. were unambiguously identified, including 16 monogalactosyldiacylglycerols (MGDGs), 9 digalactosyldiacylglycerols (DGDGs), 23 sulfoquinovosyldiacylglycerols (SQDGs) and 8 phosphatidylglycerols (PGs). As far as our knowledge, this is the first report on global identification of photosynthetic glycerolipids, including lipid classes, fatty acyl composition within lipids and the location of fatty acids in lipids (sn-1 vs. sn-2), in the extract of marine microalgae by UPLC-ESI-Q-TOF MS directly.  相似文献   

18.
纪三郝  巨勇  肖强  赵玉芬 《中国化学》2006,24(7):943-949
Novel steroidal phosphoramidate conjugates of 3'-azido-2',3'-dideoxythymidine(AZT)and amino acid esterswere synthesized and determined by positive and negative ion electrospray ionization mass spectrometry.The MSfragmentation behaviors of the steroidal phosphoramidate conjugates have been investigated in conjunction withtandem mass spectrometry of ESI-MS/MS.There were three characteristic fragment ions in the positive ion ESImass spectra,which were the Na adduct ions with loss of steroidal moiety,amino acid ester moiety from pseudomolecular ion(M Na)~ ,and the phosphoamino acid methyl ester Na adduct ion by α-cleavage of the phosphora-midate respectively.The main fragment ions in negative ion ESI mass spectra were the ion(M-HN_3)~-,the ion(M-AZT-H)~-,and the ion(M-steroidal moiety-H)~- besides the pseudo molecular ion(M-H)~-.Thefragmentation patterns did not depend on the attached amino acid ester moiety.  相似文献   

19.
The nature and location of a variety of modifications of fatty acids are determined by collisional activation (CA) of [M + 2Li ? H]+ ions. The sample molecules are cationized in situ on the probe tip, desorbed by fast atom bombardment and, upon CA, undergo charge-remote decompositions. This approach is a direct, totally instrumental method for structure elucidation. Advantages of CA of [M + 2Li ? H]+ ions are that fatty acids with substituents in close proximity to the carboxylate terminus and modified short-chain acids are readily determined: decompositions of carboxylate anions of these fatty acids result in collision-activated dissociation (CAD) spectra that give incomplete structural information. However, the CAD spectra of some [M ? H]? ions, such as those from epoxy acids, are simpler to interpret than those of the [M + 2Li ? H]+ ions. Thus, CA of fatty acid [M + 2Li ? H]+ ions is a complementary approach to CA of [M ? H]? ions for determining the fatty acid structures investigated here. The use of this approach for analyzing complex mixtures of modified fatty acids is also evaluated.  相似文献   

20.
An HPLC separation method with triethylammonium acetate mobile phase additive developed for the analysis of impurities in polysulphonated azo dyes provides good separation selectivity and compatibility with electrospray ionisation (ESI) mass spectrometry. The negative‐ion ESI mass spectra containing only peaks of deprotonated molecules [M–H] for monosulphonic acids, [M–xH]x, and sodiated adducts [M–(x + y)H + yNa]x for polysulphonic acids allow easy molecular mass determination of unknown impurities. Based on the knowledge of the molecular masses and of the fragment ions in the MS/MS spectra, probable structures of trace impurities in commercial dye samples are proposed. To assist in the interpretation of the mass spectra of complex polysulphonated azodyes, additional information can be obtained after chemical reduction of azodyes to aromatic amines. The structures of the non‐sulphonated reduction products can be determined by reversed‐phase HPLC/MS with positive‐ion atmospheric pressure chemical ionisation and of the sulphonated products by ion‐pairing HPLC/MS with negative‐ion ESI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号