首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氢过氧自由基从烷烃分子中提取氢的反应是碳氢燃料中低温燃烧化学中非常重要的一类反应。本文用等键反应方法计算了这一类反应的动力学参数。所有反应物、过渡态、产物的几何结构均在HF/6-31+G(d)水平下优化得到。以反应中的过渡态反应中心的几何结构守恒为判据,该反应类可用等键反应处理。本文选取了乙烷和氢过氧自由基的氢提取反应为参考反应,其它反应作为目标反应,用等键反应方法对目标反应在HF/6-31+G(d)水平的近似能垒和反应速率常数进行了校正。为了验证方法的可靠性,选取C5以下的烷烃分子体系,对等键反应方法校正结果和高精度CCSD(T)/CBS直接计算结果进行了比较,最大绝对误差为5.58k J?mol~(-1),因此,采用等键反应方法只需用低水平HF从头算方法就可以再现高精度CCSD(T)/CBS计算结果,从而解决了该反应类中大分子体系的能垒的精确计算。本文的研究为碳氢化合物中低温燃烧模拟中重要的烷烃与氢过氧自由基氢提取反应提供了准确的动力学参数。  相似文献   

2.
基于燃烧详细反应机理构建的需要, 采用反应类过渡态理论(RC-TST)研究了OH自由基夺取烷基环戊烷环上和侧链上氢原子的动力学. 在考察侧链氢提取反应类的16个代表反应的基础上, 本工作首次将该方法推广到环上α氢提取反应类的10个代表反应的研究, 分别建立了两类反应的线性自由能(LER)关系式. 计算结果表明, 采用RC-TST/LER方法预测的这两类反应的速率常数与直接应用TST/Eckart方法得到的结果接近, 说明RC-TST/LER方法对预测这两类反应的速率常数非常有效, 且节约了大量计算成本. 而且, 无论是侧链还是五元环, OH·夺取叔碳上的氢原子最易发生.  相似文献   

3.
4.
在DFT方法的B3LYP/6-31G水平下, 对反式白藜芦醇分子的所有可能构象进行了优化, 并对最稳定构象进行了自然键轨道分析. 键级数据表明, 白藜芦醇清理羟基自由基最活泼反应位点应为其单羟基环上的羟基, 对产物白藜芦醇自由基的优化结果表明, 单羟基环氧自由基的稳定性最高. 在B3LYP/6-31G水平下寻找白藜芦醇单羟基环羟基清理羟基自由基的过渡态, 频率分析结果表明只存在一个虚频. 对该过渡态结构进行内禀反应坐标反应路径解析(IRC), 结果表明, 过渡态沿反应坐标方向分别指向反应物络合物和产物络合物, 反应通道各个能量驻点显示反应物与反应物络合物的能量差为E1=173.5193 kJ/mol, 反应物络合物与过渡态、反应物络合物与产物的能量差分别为Ea=16.5143 kJ/mol, E2=51.8799 kJ/mol. 可见反应物的能量远高于过渡态及产物, 因此, 反应物络合物的形成应是整个反应的驱动力.  相似文献   

5.
流动注射荧光法测定羟基自由基   总被引:10,自引:3,他引:10  
研究Sn2 + 催化H2 O2 产生的·OH的反应 ,·OH与Ce3+ 作用后氧化生成无荧光的Ce4 + 。通过测定Ce3+ 的荧光强度的变化可间接测定所产生的羟自由基 ,并结合流动注射技术 ,确定了体系最佳实验条件。测定抗氧化剂清除羟自由基的实验 ,证明该体系可作为在线筛选抗氧化剂的方法之一。  相似文献   

6.
苯基荧光酮光度法测定·OH   总被引:1,自引:0,他引:1  
建立了一种新的测定Fenton反应所产生的羟自由基的方法 ,苯基荧光酮 (Phenylfluorone ,简称本芴酮 )与Fenton试剂作用后 ,使其荧光大大降低 ,其最大激发波长和发射波长分别为 50 0nm和 42 0nm ,基于苯基荧光酮在反应前后的荧光变化 ,即可间接地测定羟自由基的产生量。同时 ,通过清除率实验反证了该方法的可靠性 ,利用顺磁共振法测定苯基荧光酮加入前后的波谱变化来进一步证实该方法的正确性。化学测定过程均在国产仪器下完成 ,具有较高的灵敏度。可推广为一种作为寻找羟自由基清除剂的方法 ,也可作为医学上部分药品性能检验的一种方法  相似文献   

7.
以鲱鱼精脱氧核糖核酸(Herring sperm DNA)为研究对象,利用紫外光(UV,200~275 nm,66.4 Lx)激发纳米TiO2发生光催化作用介导产生羟基自由基(Hydroxyl radical,.OH),探讨.OH引发DNA氧化损伤特性。采用凝胶电泳和高效液相色谱(HPLC)分析法跟踪DNA损伤历程;应用电子自旋共振(Electron spinresonance,ESR)及分光光度法跟踪损伤过程氧化物种及H2O2相对浓度的变化;运用生物标准样8-羟基脱氧鸟苷(8-Hydroxy-2’-deoxyguanosine,8-OHdG)为内标物,通过HPLC分析DNA损伤产物,研究DNA损伤机理。结果表明,较单纯UV辐照或暗光(Dark)催化条件,DNA浓度10 mg/L,TiO2浓度1.5 g/L、pH 7~8,紫外光激发纳米TiO2介导产生.OH引发DNA损伤程度最大;DNA损伤为.OH氧化历程,并伴随有深度氧化过程;DNA结构中鸟嘌呤最易氧化损伤,8-OHdG为DNA氧化损伤中间产物及鸟嘌呤氧化损伤的特异产物。  相似文献   

8.
《广州化学》2001,26(1):37-41
建立了一种新的测定Fenton反应所产生的羟自由基的方法,苯基荧光酮(Phenylfluorone,简称本芴酮)与Fenton试剂作用后,使其荧光大大降低,其最大激发波长和发射波长分别为500nm和420nm,基于苯基荧光酮在反应前后的荧光变化,即可间接地测定羟自由基的产生量.同时,通过清除率实验反证了该方法的可靠性,利用顺磁共振法测定苯基荧光酮加人前后的波谱变化来进一步证实该方法的正确性.化学测定过程均在国产仪器下完成,具有较高的灵敏度.可推广为一种作为寻找羟自由基清除剂的方法,也可作为医学上部分药品性能检验的一种方法.  相似文献   

9.
Exposure of solutions containing both tryptophan and hydrogen peroxide to a pulsed (∼180 fs) laser beam at 750 nm induces luminescence characteristic of 5-hydroxytryptophan. The results indicate that 3-photon excitation of tryptophan results in photoionization within the focal volume of the laser beam. The resulting hydrated electron is scavenged by hydrogen peroxide to produce the hydroxyl radical. The latter subsequently reacts with tryptophan to form 5-hydroxytryptophan. The involvement of hydroxyl radicals is confirmed by the use of ethanol and nitrous oxide as scavengers and their effects on the fluorescence yield in this system. It is postulated that such multiphoton ionization of tryptophanyl residues in cellular proteins may contribute to the photodamage observed during imaging of cells and tissues using multiphoton microscopy.  相似文献   

10.
荧光法测定Fenton反应产生的羟自由基   总被引:55,自引:5,他引:55  
徐向荣  王文华 《分析化学》1998,26(12):1460-1463
建立了一种新的测定Fenton反应产生羟自由基·OH的方法。Ce^3+在稀硫酸中能产生特征荧光,其最大激发波长和发射波长分别为280nm和360nm。Fenton反应产生的·OH能将Ce^3+氧化成Ce^4+,用荧光法测定Ce^3+的荧光强度变化即可间接测定羟自由基的产生量。通过对测定条件的研究,得到最佳实验条件,。结果表明,该方法稳定性好、操作简便、测定快速,可作为一种简便的筛选抗氧化剂的方法。  相似文献   

11.
12.
The reactions of cationic zirconium oxide clusters (ZrxOy^+) with ethylene (C2H4) were investigated by using a time-of-flight mass spectrometer coupled with a laser ablation/supersonic expansion cluster source. Some hydrogen containing products (ZrO2)xH^+(x=-1-4) were observed after the reaction. The density functional theory calculations indicate that apart from the common oxygen transfer reaction channel, the hydrogen abstraction channel can also occur in (ZrO2)x^++C2H4, which supports that the observed (ZrO2)xH^+ may be due to (ZrO2)x^++C2H4→(ZrO2)xH^++C2H3. The rate constants of different reaction channels were also calculated by Rice-Rarnsberger-Kassel-Marcus theory.  相似文献   

13.
Catalysts for the oxidation of NH3 are critical for the utilization of NH3 as a large‐scale energy carrier. Molecular catalysts capable of oxidizing NH3 to N2 are rare. This report describes the use of [Cp*Ru(PtBu2NPh2)(15NH3)][BArF4], (PtBu2NPh2=1,5‐di(phenylaza)‐3,7‐di(tert‐butylphospha)cyclooctane; ArF=3,5‐(CF3)2C6H3), to catalytically oxidize NH3 to dinitrogen under ambient conditions. The cleavage of six N?H bonds and the formation of an N≡N bond was achieved by coupling H+ and e? transfers as net hydrogen atom abstraction (HAA) steps using the 2,4,6‐tri‐tert‐butylphenoxyl radical (tBu3ArO.) as the H atom acceptor. Employing an excess of tBu3ArO. under 1 atm of NH3 gas at 23 °C resulted in up to ten turnovers. Nitrogen isotopic (15N) labeling studies provide initial mechanistic information suggesting a monometallic pathway during the N???N bond‐forming step in the catalytic cycle.  相似文献   

14.
15.
Abstract

The aliphatic polyesters are normally synthesized by ester interchange reactions or direct esterification of hydroxyacids or diacid/diol combinations. Biotransformation, utilizing the enzymes as catalysts, was accepted as an alternative route for the synthesis of aliphatic polyesters and offers various advantages compared with the conventional, metal-catalyzed polymerization reactions. Previous studies indicated that lipase-catalyzed polycondensation reactions between diols and diacids occurred preferentially at primary hydroxyl groups of diols, when diols contained both primary and secondary hydroxyl groups. In this work, we investigated lipase-catalyzed polycondensation of diacids and secondary hydroxyl group–containing diols, and successfully synthesized polyesters by polycondensation with secondary hydroxyl groups as well as primary hydroxyl groups. Various diols, glycerol, 1,2-propanediol, 1,3-butanediol, 2,3-butanediol, and 2,4-pentanediol were tested for the polycondensation. The polymerization was achieved by heating a mixture of lipase B, sebacic acid, and the diols in anhydrous toluene at 100 °C for 72 h. The resulting polymers were characterized by 1H and 13C NMR spectroscopy, Fourier transform–infrared spectroscopy, thermogravimetric analysis, and gel permeation chromatography.  相似文献   

16.
We computed the mechanism of fluorescence quenching of benzaldehyde in water through relaxed potential energy surface scans. Time‐dependent density functional theory calculations along the protonation coordinate from water to benzaldehyde reveal that photoexcitation to the bright ππ* (S3) state is immediately followed by ultrafast decay to the nπ* (S1) state. Evolving along this state, benzaldehyde (BA) abstracts a hydrogen atom, resulting in a BAH. and OH. radical pair. Benzaldehyde does not act as photobase in water, but abstracts a hydrogen atom from a nearby solvent molecule. The system finally decays back to the ground state by non‐radiative decay and an electron transfers back to the OH. radical. Proton transfer from BAH+ to OH? restores the initial situation, BA in water.  相似文献   

17.
Abstract

In the presence of a free radical initiator, limonene combines with a primary phosphine to yield a 1:1 adduct (I). Initially the addition takes place at the isopropenyl moiety. The resulting secondary phosphine subsequently undergoes an intramolecular addition to produce two isomeric 2-alkyl-4,8-dimethyl-3-phosphabicyclo [3.3.1]nonanes (II, III) in >85% yield. Analogous bicyclic secondary phosphines are formed by free radical addition of phosphine to limonene. Yields are slightly lower due to the addition of the reactive secondary phosphines to a second mole of limonene.  相似文献   

18.
褪色光度法测定芬顿体系中产生的羟自由基   总被引:24,自引:0,他引:24  
张乃东  郑威  彭永臻 《分析化学》2003,31(5):552-554
建立了检测Fenton反应产生羟自由基的新方法。在pH3.5条件下,经自由基与甲基紫发生反应使甲基紫褪色,在580nm处用分光光度计测定其△A值的变化,可间接测定羟自由基的生成量。通过对测定条件的研究,得到最佳实验条件。甲基紫光度法稳定性好,可作为一种简便的筛选羟自由基清除剂的方法。  相似文献   

19.
史书杰  王鹏  曹海雷  张威 《分析化学》2007,35(9):1391-1391
1引言水中羟基自由基(.OH)含量是评价水处理高级氧化工艺处理效率的重要指标。由于.OH的反应活性大、寿命短、存在浓度低,其检测具有一定的难度。文献报道检测.OH的主要方法为采用捕获剂将自由基固化之后进行检测。目前检测羟基自由基的主要方法有自旋捕捉-电子自旋共振波谱(ES  相似文献   

20.
The growth of polycyclic aromatic hydrocarbons (PAHs) is in many areas of combustion and pyrolysis of hydrocarbons an inconvenient side effect that warrants an extensive investigation of the underlying reaction mechanism, which is known to be a cascade of radical reactions. Herein, the focus lies on one of the key reaction classes within the coke formation process: hydrogen abstraction reactions induced by a methyl radical from methylated benzenoid species. It has been shown previously that hydrogen abstractions determine the global PAH formation rate. In particular, the influence of the polyaromatic environment on the thermodynamic and kinetic properties is the subject of a thorough exploration. Reaction enthalpies at 298 K, reaction barriers at 0 K, rate constants, and kinetic parameters (within the temperature interval 700–1100 K) are calculated by using B3LYP/6‐31+G(d,p) geometries and BMK/6‐311+G(3df,2p) single‐point energies. This level of theory has been validated with available experimental data for the abstraction at toluene. The enhanced stability of the product benzylic radicals and its influence on the reaction enthalpies is highlighted. Corrections for tunneling effects and hindered (or free) rotations of the methyl group are taken into account. The largest spreading in thermochemical and kinetic data is observed in the series of linear acenes, and a normal reactivity–enthalpy relationship is obtained. The abstraction of a methyl hydrogen atom at one of the center rings of large methylated acenes is largely preferred. Geometrical and electronic aspects lie at the basis of this striking feature. Comparison with hydrogen abstractions leading to arylic radicals is also made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号