首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Two multidimensional HPLC separations of an Australian red wine are presented, >70% of the available separation space was used. A porous graphitic carbon (PGC) stationary phase was used as the first dimension in both separations with both RP core–shell and hydrophilic interaction chromatography fully porous columns used separately in the second dimension. To overcome peak analysis problems caused by signal noise and low detection limits, the data were pre‐processed with penalised least‐squares smoothing. The PGC × RP combination separated 85 peaks with a spreading angle of 71° and the PGC × hydrophilic interaction chromatography separated 207 peaks with a spreading angle of 80°. Both 2D‐HPLC steps were completed in 76 min using a comprehensive stop‐and‐go approach. A smoothing step was added to peak‐picking processes and was able to greatly reduce the number of false peaks present due to noise in the chromatograms. The required thresholds were not able to ignore the noise because of the small magnitude of the peaks; 1874 peaks were located in the non‐smoothed PGC × RP separation that reduced to 227 peaks after smoothing was included.  相似文献   

2.
RP‐HPLC coupled with fluorescence detection for separation of carbon nanoparticles (CNP) synthesized with microwave‐assisted pyrolysis of citric acid and 1,2‐ethylenediamine is presented. The influence of methanol content and pH of mobile phase on the separation of CNP has been investigated. Under optimal mobile phase and elution gradient conditions, the effect of mole ratio of amine to carboxylic groups (NH2/COOH) in the initial reagents on CNP product is studied. At NH2/COOH = 0.67, the strongest fluorescence CNP sample is obtained. The separated CNP fractions are collected and further characterized by UV‐visible absorption and photoluminescence (PL) spectroscopy, CE, transmission electron microscopy (TEM), and MALDI‐TOF MS. The absorption and PL emission bands of the fractions are bathochromatically shifted with the elution order of CNP on RP‐HPLC. The TEM images prove that CNP are eluted from the smallest to the largest. The MS data show that CNP undergo fragmentations, closely relating to their surface‐attached carboxylic acid and amide/amine moieties. This work highlights the merit of RP‐HPLC coupled with fluorescence detection, TEM, and MS for isolation and characterization of individual CNP species present in a CNP sample.  相似文献   

3.
Hydrochlorothiazide (HCT) is a diuretic used to treat hypertension. In order to study its intestinal permeation behavior applying an ex vivo methodology, a rapid, sensitive and selective reversed‐phase liquid chromatography (RP‐HPLC) method coupled with UV detection (RP‐HPLC UV) was developed for the analysis of HCT in TC199 culture medium used as mucosal and serosal solutions in the everted rat intestinal sac model. Also, analytical procedures for the quantification of HCT by RP‐HPLC with UV detection required a sample preparation step by solid‐phase extraction. The method was validated in the concentration range of 8.05 × 10−7 to 3.22 × 10−5 m for HCT. Chromatographic parameters, namely carry‐over, lower limit of quantification (1.4491 × 10−7 m ), limit of detection (3.8325 × 10−8 m ), selectivity, inter‐ and intraday precision and extraction recovery, were determined and found to be adequate for the intended purposes. The validated method was successfully used for permeability assays across rat intestinal epithelium applying the ex vivo everted rat gut sac methodology to study the permeation behavior of HCT.  相似文献   

4.
Triterpenoid saponins are difficult to analyze using high‐performance liquid chromatography coupled to UV/vis spectrophotometry due to their lack of chromophores. This study describes the first analytical method for the determination of 15 triterpenoid saponins from the leaves, stems, root bark, and fruits of Acanthopanax henryi, using a high‐performance liquid chromatography with charged aerosol detection coupled with electrospray ionization mass spectrometry method. The separation was carried out on a Kinetex XB‐C18 column with an acetonitrile/water gradient as the mobile phase, followed by charged aerosol detection. The operating conditions of charged aerosol detection were set at 24 kPa for nitrogen pressure and 100 pA for the detection range. Liquid chromatography with electrospray ionization mass spectrometry is described for the identification of compounds in plant samples. The electrospray ionization mass spectrometry method involved the use of the [M + Na]+ and [M + NH4]+ ions for compounds 1 – 15 in the positive ion mode with an extracted ion chromatogram. The developed method was fully validated in terms of linearity, sensitivity, precision, repeatability, and recovery, then subsequently applied to evaluate the quality of A. henryi.  相似文献   

5.
A 2‐D‐HPLC/CE method was developed to separate and characterize more in depth the phenolic fraction of olive oil samples. The method involves the use of semi‐preparative HPLC (C18 column 250×10 mm, 5 μm) as a first dimension of separation to isolate phenolic fractions from commercial extra‐virgin olive oils and CE coupled to TOF‐MS (CE‐TOF‐MS) as a second dimension, to analyze the composition of the isolated fractions. Using this method, a large number of compounds were tentatively identified, some of them by first time, based on the information concerning high mass accuracy and the isotopic pattern provided by TOF‐MS analyzer together with the chemical knowledge and the behavior of the compounds in HPLC and CE. From these results it can be concluded that 2‐D‐HPLC‐CE‐MS provides enough resolving power to separate hundreds of compounds from highly complex samples, such as olive oil. Furthermore, in this paper, the isolated phenolic fractions have been used for two specific applications: quantification of some components of extra‐virgin olive oil samples in terms of pure fractions, and in vitro studies of its anti‐carcinogenic capacity.  相似文献   

6.
2‐D HPLC incorporating two reversed phase (RP) environments was employed for the isolation of oligomers and their diastereomers of low molecular weight oligostyrenes. The operation of a comprehensive method of analysis was compared to a heart‐cutting approach. The comprehensive approach employed a high resolution diastereomer separation in the first dimension and a low peak capacity C18, high speed separation according to molecular weight. Because of solvent incompatibility between the dimensions in the comprehensive method, successful separation of the diastereomers of the oligomers was not possible. The heart‐cutting approach used a C18 monolith in the first dimension, which was selective only for molecular weight. Entire molecular weight fractions were then transported to the second dimension in an online heart‐cutting process for the separation of diastereomers. The heart‐cutting process was more successful in that 228 components of the 511 within the sample were recognized. This series of separations was undertaken in less than 6 h.  相似文献   

7.
This review covers applications of ion mobility spectrometry (IMS) hyphenated to mass spectrometry (MS) in the field of synthetic polymers. MS has become an essential technique in polymer science, but increasingly complex samples produced to provide desirable macroscopic properties of high‐performance materials often require separation of species prior to their mass analysis. Similar to liquid chromatography, the IMS dimension introduces shape selectivity but enables separation at a much faster rate (milliseconds vs minutes). As a post‐ionization technique, IMS can be hyphenated to MS to perform a double separation dimension of gas‐phase ions, first as a function on their mobility (determined by their charge state and collision cross section, CCS), then as a function of their m/z ratio. Implemented with a variety of ionization techniques, such coupling permits the spectral complexity to be reduced, to enhance the dynamic range of detection, or to achieve separation of isobaric ions prior to their activation in MS/MS experiments. Coupling IMS to MS also provides valuable information regarding the 3D structure of polymer ions in the gas phase and regarding how to address the question of how charges are distributed within the structure. Moreover, the ability of IMS to separate multiply charged species generated by electrospray ionization yields typical IMS‐MS 2D maps that permit the conformational dynamics of synthetic polymer chains to be described as a function of their length.  相似文献   

8.
Two‐dimensional preparative multi‐channel parallel high performance liquid chromatography was successfully applied for the first time to isolate and purify alkaloids from Corydalis yanhusuo. The experiments were performed in off‐line mode using the same preparative chromatographic column with pH 3.5 in the first and pH 10.0 in the second separation dimension. In the preparative process, UV‐triggered fraction collection was used in the first dimension while UV and MS‐triggered collection were used in the second dimension for reasons of sensitivity and complementarity. Two pure compounds and nine fractions were obtained in the first dimension. Then two representative fractions were further purified in the second dimension and six pure compounds were obtained. The results demonstrated that this procedure is an effective approach for the preparative isolation and purification of alkaloids from Corydalis yanhusuo. Based on the different pH values of the mobile phase in this method, it is also suitable for the preparative isolation and purification of other compounds from TCMs which are sensitive to the pH of the solutions. Moreover, this method will be a promising tool for the purification of low content compounds from natural products.  相似文献   

9.
Polyimide HPLC‐Chip devices containing poly(methylstyrene‐bis‐p‐vinylphenyl)ethane (MS/BVPE) stationary phase within the device channels and with wall attachment were prepared by thermally initiated free radical polymerization. The microfluidic devices were coupled to both UV and MS detectors. The potential of the MS/BVPE monolith as an alternative separation media within chip devices was investigated by side‐by‐side comparisons to particulate media within commercial devices. The chromatographic behavior of this stationary phase was comparable to particulate media for separations of proteins as the average peak width at half‐height was equal (6.2 s) for a separation within 8 min under gradient elution conditions. The ability to control the porosity characteristics of the MS/BVPE monolith with changes in polymerization time also extended its utility into small analyte (< 500 Da) applications, although more optimization is needed to match conventional RP media for these applications. The good mechanical stability of the MS/BVPE monolith within the microdevices enabled excellent run‐to‐run repeatability (%RSD retention time (? 0.16) and chip‐to‐chip reproducibility (%RSD retention time (1.4). The use of this material within enrichment channels also shows its potential value in more complex work flows.  相似文献   

10.
Animal venoms are complex mixtures of more than 100 different compounds, including peptides, proteins, and nonprotein compounds such as lipids, carbohydrates, and metal ions. In addition, the existing compounds show a wide range of molecular weights and concentrations within these venoms, making separation and purification procedures quite tedious. Here, we analyzed for the first time by MS the advantages of using the OFFGEL technique in the separation of the venom components of the Egyptian Elapidae Walterinnesia aegyptia snake compared to two classical methods of separation, SEC and RP‐HPLC. We demonstrate that OFFGEL separates venom components over a larger scale of fractions, preserve respectable resolution with regard to the presence of a given compound in adjacent fractions and allows the identification of a greater number of ions by MS (102 over 134 total ions). We also conclude that applying several separating techniques (SEC and RP‐HPLC in addition to OFFGEL) provides complementary results in terms of ion detection (21 more for SEC and 22 more with RP‐HPLC). As a result, we provide a complete list of 134 ions present in the venom of W. aegyptia by using all these techniques combined.  相似文献   

11.
To detect and identify the electron spin resonance (ESR) silent forms of the α‐(4‐pyridyl‐1‐oxide)‐N‐tert‐butylnitrone (4‐POBN) radical adducts, an electrochemical detector (ECD) was employed as a reactor in the HPLC‐ECD‐UV absorption detector‐ESR‐MS (HPLC‐ECD‐UV‐ESR‐MS). The ECD was employed to regenerate the radical forms from the reduced forms. The reduced forms of the 4‐POBN/pentyl radical adducts were analyzed using the HPLC‐ECD‐UV‐ESR‐MS. On addition of the ECD applied potential of +0.3 V, a peak appeared on the ESR trace of the HPLC‐ECD‐UV‐ESR‐MS analyses, indicating that the radical forms are regenerated from the reduced forms. The HPLC‐ECD‐UV‐ESR‐MS analyses were also performed for the reaction mixtures of phenylhydrazine with CuCl2. Two peaks (peaks I and II) were detected on the UV trace (300 nm) of the HPLC‐ECD‐UV‐ESR‐MS. The mass spectra showed that the peak I and peak II compounds are radical and reduced forms of the 4‐POBN/phenyl radical adducts under the ECD applied potential of 0.0 V. Peak I was only detected on the ESR trace under the ECD applied potential of 0.0 V. In addition to peak I, peak II appeared on the ESR trace under the ECD applied potential of +0.3 V, indicating that the reduced forms are oxidized to the corresponding radical forms.  相似文献   

12.
Rapid, simple and reliable HPLC/UV and LC‐ESI‐MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C30 column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC‐ESI‐MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC‐ESI‐MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC‐ESI‐MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra‐ and inter‐day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC‐ESI‐MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This work describes a comprehensive achiral × chiral two-dimensional liquid chromatography separation for enantioselective amino acid analysis coupled to electrospray ionization-tandem mass spectrometry detection using data-independent acquisition. Flow splitting after the first and second dimension separation was utilized for volumetric flow reduction and for enabling a multi-detector approach (with ultraviolet, fluorescence, charged aerosol, and MS detection), respectively. Derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate provided a chromophore, a fluorophore, and an efficient mass tag for efficient ionization in positive electrospray ionization-mass spectrometry. Chiral columns often have limitations in terms of their chemoselectivity, which may be a problem when complex sample mixtures with structurally related compounds need to be separated. It can be alleviated by a reversed-phase×chiral two-dimensional-liquid chromatography setup, in which the first dimension provides the chemoselectivity and a chiral tandem column constituted of quinine-carbamate derived weak anion-exchanger and zwitterionic ion-exchanger in the second dimension separation of D- and L-amino acid enantiomers. The method was used to control the stereointegrity of the therapeutic peptide octreotide. After hydrolysis, all amino acid constituents were detected with the correct configuration and composition. Some options for flow splitting and integration of destructive detectors in the first dimension separation are outlined.  相似文献   

14.
Most of the anti‐breast cancer drugs are often limited owing to drug resistance and serious adverse reactions. Therefore, development of more targeted and low toxic drugs from traditional Chinese medicines for breast cancer are needed. At the same time, establishment of fast and effective drug screening methods are urgently required. We describe here a 2D LC method of MDA‐MB‐231 cell membrane chromatography combined with HPLC/MS for recognition, separation, and identification of target components from traditional Chinese medicine Cortex Magnolia officinalis. The MDA‐MB‐231 cells membrane was used to prepare the chromatographic stationary phase in the first dimension. The active compounds had a retention characteristic on the cell membrane chromatography model (10 × 2.0 mm, 5 μm). The retention fractions were enriched using an online C18 column (10 × 1.0 mm, 5 μm) and were analyzed by the second dimension RP chromatography. Finally, the activity of the retention fractions was tested through in vitro experiments. Results showed that the retention fractions were honokiol and magnolol and the inhibition rate on MDA‐MB‐231 cell growth were 23 and 64 μM, respectively. These results support the conclusion that this coupled analytical technique could be an efficient method in drug discovery.  相似文献   

15.
This paper explores the analytical figures of merit of two‐dimensional high‐performance liquid chromatography for the separation of antioxidant standards. The cumulative two‐dimensional high‐performance liquid chromatography peak area was calculated for 11 antioxidants by two different methods—the areas reported by the control software and by fitting the data with a Gaussian model; these methods were evaluated for precision and sensitivity. Both methods demonstrated excellent precision in regards to retention time in the second dimension (%RSD below 1.16%) and cumulative second dimension peak area (%RSD below 3.73% from the instrument software and 5.87% for the Gaussian method). Combining areas reported by the high‐performance liquid chromatographic control software displayed superior limits of detection, in the order of 1 × 10?6 M, almost an order of magnitude lower than the Gaussian method for some analytes. The introduction of the countergradient eliminated the strong solvent mismatch between dimensions, leading to a much improved peak shape and better detection limits for quantification.  相似文献   

16.
In the present work, an orthogonal two-dimensional (2D) capillary liquid chromatography (LC) method for fractionation and separation of proteins using wide range pH gradient ion exchange chromatography (IEC) in the first dimension and reversed phase (RP) in the second dimension, is demonstrated. In the first dimension a strong anion exchange (SAX) column subjected to a wide range (10.5-3.5) descending pH gradient was employed, while in the second dimension, a large pore (4,000 A) polystyrene-divinylbenzene (PS-DVB) RP analytical column was used for separation of the protein pH-fractions from the first dimension. The separation power of the off-line 2D method was demonstrated by fractionation and separation of human plasma proteins. Seventeen pH-fractions were manually collected and immediately separated in the second dimension using a column switching capillary RP-LC system. Totally, more than 200 protein peaks were observed in the RP chromatograms of the pH-fractions. On-line 2D analysis was performed for fractionation and separation of ten standard proteins. Two pH-fractions (basic and acidic) from the first dimension were trapped on PS-DVB RP trap columns prior to back-flushed elution onto the analytical RP column for fast separation of the proteins with UV/MS detection.  相似文献   

17.
A general scheme is set up for the estimation of the impurity profile of bulk drug substances by the complex use of chromatographic, spectroscopic and hyphenated techniques. Several examples are presented as illustrations to the scheme from the authors' laboratory involving the use of chromatographic methods such as thin-layer-(TLC), gas-(GC), analytical and preparative high-performance liquid chromatography (HPLC), spectroscopic methods such as mass spectrometry (MS) and NMR spectroscopy as well as hyphenated techniques (HPLC/diode-array UV, GC/MS and HPLC/MS). In addition to summarizing earlier work, new examples are also presented: identification of an impurity (propyl 4-[diethylcarbamoyl(methoxy)]-3-methoxy phenylglyoxylate, II) in propanidid (I) and two unsaturated impurities in allylstrenol (VII) by GC/MS and HPLC/diode-array UV as well as estimation of the impurity profile of mazipredone (III) by HPLC/MS and HPLC/diode-array UV.  相似文献   

18.
In this work, an automated 2D‐LC approach for protein isolation from egg samples on preparative scale is proposed. The method is based on the use of a C18 guard column installed in a switching valve to focus the proteins coming from the first dimension column, before their elution in the second column. For the first dimension separation, a size‐exclusion column, packed with 3 μm ultrapure silica particles was used. An RP column based on core‐shell technology was used for the second dimension separation. A standard mixture of BSA, β‐lactoglobulin, and glucose oxidase, chosen as a protein model system, was used to optimize the chromatographic separation conditions. The fully automated workflow allowed to isolate, in a single‐chromatographic analysis, a protein amount of 50 μg for each peak fraction, with a total time of 15 min for the first separation and additional 30 min of the second separation for each trapped protein. The final aim was the development of proper analytical tools for protein isolation from foodstuffs to be used for the molecular identification by MS, as well as for biotherapeutic uses, allergy testing, and large‐scale investigations in biological systems.  相似文献   

19.
Preliminary results of 2‐D separation of test dye mixture using high‐performance thin‐layer chromatography (HPTLC) and pressurized planar electrochromatography (PPEC) are demonstrated. The advantage of 2‐D HPTLC/PPEC separation is based on different separation selectivities obtained in both HPTLC and PPEC systems. HPTLC RP18 W plates of 5×20 cm from Merck were used in the investigations. In the first dimension, a HPTLC process was performed using 5 cm length of the plate and in the second dimension PPEC separation was obtained applying plate of 20 cm length. PPEC process followed prewetting the chromatographic plate with sample zones on it, which were partly separated after first dimensional (HPTLC) separation. In the experiments, the modified version of PPEC device for 20 cm long chromatographic plate and the reservoir for prewetting the adsorbent layer were applied.  相似文献   

20.
Rapid and simple HPLC‐UV and LC‐MS methods were developed and validated for the quantification of ertapenem (Invanz?) in human plasma. Ertapenem is a unique drug in that current dosing recommendations call for a 1 g dose for normal renal function patients, despite body weight. These assays, which involve a protein precipitation followed by liquid–liquid extraction, allow for fast therapeutic drug monitoring of ertapenem in patients, which is especially useful in special populations. Both methods were sufficient to baseline resolve meropenem (internal standard) and ertapenem, and were validated over 3 days using a six‐point calibration curve (0.5–50 µg/mL). Validation was collected using four different points on the calibrations curve yielding acceptable precision (<15% inter‐day and intra‐day; <20% for lower limit of quantitation, LLOQ) as well as accuracy (<15% inter‐day and intra‐day; <20% for LLOQ). The lower limit of detection (LOD) was determined to be 0.1 and 0.05 µg/mL for the HPLC‐UV and LC‐MS methods, respectively. The developed HPLC‐UV and LC‐MS methods for ertapenem quantification are fast, accurate and reproducible over the calibration range and can be used to determine ertapenem plasma concentrations for monitoring clinical efficacy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号