首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The continued use of fossil fuels as primary sources of energy in industry and other applications stands the test of time, due to their availability and relatively lower cost than alternative sources of energy. In view of this perspective, obtaining an advanced bulk carbon dioxide (CO2) capture medium becomes an urgent necessity so as to mitigate their effect, especially in global warming, as the use of fossil fuels produces a high rate of CO2. In this work, the mechanism and kinetics of CO2 capture using aqueous piperazine (PZ) as an activator to 2‐amino‐2‐methyl‐1,3‐propanediol (AMPD) were investigated. The termolecular mechanism was used to model the kinetics of the system. Reaction kinetics of the single pure amines was first obtained. The reaction rate constant, the k value of AMPD, was 77.2 m3/kmol·s, with a reaction order, n, of 1.25 at 298 K. while that of PZ was equal to 11,059 m3/kmol·s and n as 1.49 at 298 K. Blending of 0.05 kmol/m3 of PZ with 0.5 kmol/m3 of AMPD gave a rate constant, k, value of 23,319 m3/kmol·s and n equal to 1.23 at 298 K. The result obtained for the blended system is more than twice the value of the summation of the corresponding pure amines; in addition, it is comparably higher than the rate constant of monoethanolamine (MEA) in use as a commercial solvent for CO2 capture. Therefore, an aqueous blend of PZ with AMPD deserves more comprehensive study as a solvent for commercial CO2 capture. AMPD like other sterically hindered amines absorbs CO2 in an equimolar ratio that is significantly higher than that of MEA. PZ serves as a promoter in the amine mixture and is required in a very small proportion.  相似文献   

2.
A convenient procedure for highly efficient chemoselective cyclization of threo‐(1S,2S)‐2‐amino‐1‐(4‐nitrophenyl)propane‐1,3‐diol with some ketones was described. The structures of the condensates were elucidated on the basis of the IR, 1H‐ and 13C‐NMR, and mass spectra. Ring‐ring tautomerism in 2‐aminopropane‐1,3‐diol chemistry is reported for the first time.  相似文献   

3.
A series of comb polymers consisting of a methacrylate backbone and poly(2‐ethyl‐2‐oxazoline) (PEtOx) side chains was synthesized by a combination of cationic ring‐opening polymerization and reversible addition–fragmentation chain transfer polymerization. Small‐angle neutron scattering (SANS) studies revealed a transition from an ellipsoidal to a cylindrical conformation in D2O around a backbone degree of polymerization of 30. Comb‐shaped PEtOx has lowered Tg values but a similar elution behavior in liquid chromatography under critical conditions in comparison to its linear analog was observed. The lower critical solution temperature behavior of the polymers was investigated by turbidimetry, dynamic light scattering, transmission electron microscopy, and SANS revealing decreasing Tcp in aqueous solution with increasing molar mass, the presence of very few aggregated structures below Tcp, a contraction of the macromolecules at temperatures 5 °C above Tcp but no severe conformational change of the cylindrical structure. In addition, the phase diagram including cloud point and coexistence curve was developed showing an LCST of 75 °C of the binary mixture poly[oligo(2‐ethyl‐2‐oxazoline)methacrylate]/water. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
Diaminomaleonitrile and N‐arylbenzamidrazones reacted together to give 4‐amino‐5‐iminopyrazoles. A probable reaction mechanism involves firstly removal of ammonia, followed by addition and cylization of the hydrazino‐N 2 of amidrazone to the nitrile group in diaminomaleonitrile. The structure of the obtained products was proved by IR, mass, NMR spectra and elemental analyses.  相似文献   

5.
Reaction of 2‐amino‐N‐substituted benzamides and dimethyl acetylenedicarboxylate (DMAD) in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) in H2O at room temperature led to the formation of novel 1,2,3,4‐tetrahydroquinazolinones.  相似文献   

6.
The self‐assembly of a novel double hydrophilic block copolymer in water without the application of external triggers is described, namely pullulan‐b‐poly(2‐ethyl‐2‐oxazoline) (Pull‐b‐PEtOx). The biomacromolecules, Pull (8–38 kg mol?1), is modified and conjugated to biocompatible PEtOx (22 kg mol?1) via modular conjugation. Moreover, the molecular weight of the Pull blocks are varied to investigate the effect of molecular weight on the self‐assembly behavior. Spherical particles with sizes between 300 and 500 nm are formed in diluted aqueous solution (0.1–1.0 wt %) as observed via dynamic light scattering and static light scattering. Additionally, cryo scanning electron microscopy and laser scanning confocal microscopy are performed to support the finding from light scattering. The block ratio study shows an optimum ratio of Pull and PEtOx of 0.4/0.6 for self‐assembly in water in the concentration range of 0.1–1.0 wt %. At higher concentrations of 20 wt %, vesicular structures with sizes above 1 µm can be observed via optical microscopy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3757–3766  相似文献   

7.
The chiral oxazolidinone 1 (=[(3aS,6R,7aR)‐tetrahydro‐8,8‐dimethyl‐2‐oxo‐4H‐3a,6‐methano‐1,3‐benzoxazol‐3‐yl](oxo)acetaldehyde) was found to react stereoselectively with simple nitro compounds in the presence of Al2O3 or Bu4NF?3 H2O (TBAF) as catalysts, affording the diastereoisomeric nitro alcohols 3 – 6 with good asymmetric induction. When Al2O3 was used, the (S)‐configuration at the center bearing the OH group was generated, with the relative syn‐configuration for the major diastereoisomers. In the case of the nitro‐aldol reaction catalyzed by TBAF, an opposite asymmetric induction was found for two nitro compounds. In contrast to 1 , compound 12 (=((4R,5S)‐4‐methyl‐2‐oxo‐5‐phenyl‐1,3‐oxazolidin‐3‐yl)(oxo)acetaldehyde), a derivative of Evans auxiliary, gave rise to poor asymmetric induction in Henry reactions.  相似文献   

8.
In research of new biologically active compounds, the reactions of amino‐pyrazin‐2‐hydrazide and methylhydrazide with isothiocyanates, aromatic aldehydes, ketones, CS2, and formic acid were made. New thiosemicarbazides, 1,3,4‐thiadiazoles, 1,3,4‐oxadiazoles, and 1,2,4‐triazoles were obtained. New 4‐oxopteridine derivative 26 was also synthesized.  相似文献   

9.
10.
11.
A novel mode of reactivity for the diazo group, the 1,3‐addition of a nucleophile and an electrophile to the diazo group, has been realized in the intramolecular aminoalkylation of β‐amino‐α‐diazoesters to form tetrasubstituted 1,2,3‐triazolines. The reaction exhibited a broad scope, good functional group tolerance, and excellent diastereoselectivity. In addition, a new Au‐catalyzed intramolecular transannulation reaction of the obtained propargyl triazolines to give pyrroles has been discovered.  相似文献   

12.
A facile and efficient route to functionalized phosphorus heterocycles was achieved by treatment of 2‐(1,3‐dithiolan‐2‐ylidene)malononitrile with amino‐ and hydrazinophosphorus compounds in the presence of a strong base via fragmentation of 1,3‐dithiolane ring.  相似文献   

13.
Polyamines have been used as active materials to capture carbon dioxide gas based on its well-known reaction with amines to form carbamates. This work investigates the reactions between three amino-terminated poly(amidoamine) (PAMAM) dendrimers (G1, G3 and G5) and CO2(g) in aqueous (D2O) and methanolic (CD3OD) solutions. The reactions were monitored using 1H NMR spectroscopy, and yielded dendrimers with a combination of terminal carbamate and terminal ammonium groups. In aqueous media the reaction was complicated by the generation of soluble carbonate and bicarbonate ions. The reaction was cleaner in CD3OD, where the larger G5 dendrimer solution formed a gel upon exposure to CO2(g). All reactions were reversible, and the trapped CO2 could be released by treatment with N2(g) and mild heating. These results highlight the importance of the polyamine dendrimer size in terms of driving changes to the solution’s physical properties (viscosity, gel formation) generated by exposure to CO2(g).  相似文献   

14.
The 1:1 organic salt of the title compound, C7H6ClN2O+·C8H5Cl2O3? or [(2‐ABOX)(3,4‐D)], comprises the two constituent mol­ecules associated by an R22(8) graph‐set interaction through the carboxyl­ate group of 3,4‐D across the protonated N/N sites of 2‐ABOX [N?O 2.546 (3) and 2.795 (3) Å]. Cation/anion pairs associate across an inversion centre forming discrete tetramers via an additional three‐centre hydrogen‐bonding association from the latter N amino proton to a phenoxy O atom [N?O 3.176 (3) Å] and a carboxyl­ate O atom [N?O 2.841 (3) Å]. This formation differs from the polymeric hydrogen‐bonded chains previously observed for adduct structures of 2‐ABOX with carboxyl­ic acids.  相似文献   

15.
Chiral 2‐amino‐butanols ( 4 and 5 ) were obtained via the isolation of diastereomeric salt. Then, chiral compounds ( 6 – 9) were synthesized by a sequential procedure involving condensation of chiral 2‐amino‐butanol with ketone and dichloroacetyl chloride. All the compounds were characterized by IR, 1H NMR, 13C NMR, and element analysis. The absolute configurations of ( S )‐ 8 was determined by X‐ray crystallography.  相似文献   

16.
2,3‐Dihydro‐1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene 1 (Carb, R1 = iPr, R2 = Me) reacts with TeI4 to give the carbene adduct CarbTeI2 ( 3 ). The crystal structure of 3 consists of T‐shaped monomeric fragments linked by weak Te. I interactions to form infinite helical chains. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:316–319, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20090  相似文献   

17.
In 4‐chloro‐7‐(2‐de­oxy‐β‐d ‐erythro‐pento­furanos­yl)‐7H‐pyr­rolo­[2,3‐d]­pyrimidine‐2,4‐diamine, C11H14ClN5O3, the conformation of the N‐glycosylic bond is between anti and high‐anti [χ = −102.5 (6)°]. The 2′‐deoxy­ribofuranosyl unit adopts the C3′‐endo‐C4′‐exo (3T4) sugar pucker (N‐type) with P = 19.6° and τm = 32.9° [terminology: Saenger (1989). Landolt‐Börnstein New Series, Vol. 1, Nucleic Acids, Subvol. a, edited by O. Madelung, pp. 1–21. Berlin: Springer‐Verlag]. The orientation of the exocyclic C4′—C5′ bond is +ap (trans) with a torsion angle γ = 171.5 (4)°. The compound forms a three‐dimensional network that is stabilized by four inter­molecular hydrogen bonds (N—H⋯O and O—H⋯N) and one intra­molecular hydrogen bond (N—H⋯Cl).  相似文献   

18.
The reaction of 2‐ethyl‐2‐(2‐hydroxybenzylideneamino)propane‐1,3‐diol (H3L) with CuCl2⋅2H2O affords a new copper complex, [ClCu(H2L)], which has been determined using X‐ray crystallography. In the solid, copper atom is four‐coordinated by two oxygen atoms and one nitrogen atom from the ligand and one chlorine atom. Electrochemical studies show that the complex can act as an electrocatalyst for hydrogen evolution from a dimethylformamide solution of acetic acid and a neutral buffer (pH = 7.0) with a turnover frequency of 46.2 and 482 moles of hydrogen per mole of catalyst per hour at an overpotential of 941.6 and 837.6 mV, respectively.  相似文献   

19.
On treatment of 3‐amino‐5‐aryl‐1H‐pyrazoles 1 with dialkyl dicyanofumarates (=(E)‐but‐2‐enedioates) 4 in boiling 1,2‐dichloroethane, two competitive reactions occurred leading to 3‐aryl‐5‐cyano‐6,7‐dihydro‐6‐oxo‐1H‐pyrazolo[3,4‐b]pyridine‐4‐carboxylates 10 and 7‐amino‐2‐arylpyrazolo[1,5‐a]pyrimidine‐5,6‐dicarboxylates 11 . In DMF at room temperature, as well as at 100°, only compounds 10 were isolated. The formation of the major products of type 10 was rationalized via Michael addition of 1 as a C(4)‐nucleophile onto 4 , followed by HCN elimination and lactamization. On the other hand, the minor products 11 result from a Michael addition of 1 onto 4 via the NH2 group, and subsequent HCN elimination and cyclization. The structures of the products have been established by X‐ray crystallography.  相似文献   

20.
《化学:亚洲杂志》2018,13(18):2606-2610
The transition‐metal‐catalyzed formal C−C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3‐diketones instead gives C−H bond insertion products. Herein, we report a protocol for a gold‐catalyzed formal C−C bond insertion reaction of 2‐aryl‐2‐diazoesters with 1,3‐diketones, which provides efficient access to polycarbonyl compounds with an all‐carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C−C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring‐opening of the resulting donor–acceptor‐type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis‐acid‐catalyzed C−C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号