首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
In this work, the chromatographic performance of superficially porous particles (Halo core–shell C18 column, 50 mm × 2.1 mm, 2.7 μm) was compared with that of sub‐2 μm fully porous particles (Acquity BEH C18, 50 mm × 2.1 mm, 1.7 μm). Four parabens, methylparaben, ethylparaben, propylparaben, and butylparaben, were used as representative compounds for calculating the plate heights in a wide flow rate range and analyzed on the basis of the Van Deemter and Knox equations. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Both phases gave similar minimum plate heights when using nonreduced coordinates. Meanwhile, the flat C‐term of the core–shell column provided the possibilities for applying high flow rates without significant loss in efficiency. The low backpressure of core–shell particles allowed this kind of column, especially compatible with conventional high‐performance liquid chromatography systems. Based on these factors, a simple high‐performance liquid chromatography method was established and validated for the determination of parabens in various seafood sauces using the Halo core–shell C18 column for separation.  相似文献   

2.
High temperature in HPLC is considered a valuable tool helping to overcome the increase in the column backpressure when using small packing particles such as sub‐2 μm, as it allows reduction in the mobile‐phase viscosity. In this study, a fast analytical method based on HPLC‐UV was developed using a sub‐2 μm column at elevated temperature for the simultaneous determination of nine sulphonamides. Owing to the lower viscosity of the mobile phase, the separation could be achieved in 3 min at 60°C for all analytes. The effect of temperature, the organic modifier percentage and the flow rate on the retention time was studied. The method developed was used for the determination of selected sulphonamides in surface and wastewater samples. Sample preparation was carried out by solid‐phase extraction on Oasis HLB cartridges. The method developed was validated based on the linearity, precision, accuracy, detection and quantification limits. The recovery ranged from 70.6 to 96 % with standard deviations not higher than 4.7%, except for sulphanilamide. Limits of detection ranged from 1 to 10 μg/L after optimization of all analytical steps. This method has the highest performance in terms of analytical speed compared with other published HPLC‐UV methods for the determination of sulphonamides in water.  相似文献   

3.
Three columns packed with 2.0 μm superficially porous particles, 1.7 μm fully porous particles, and monodisperse 1.9 μm fully porous particles with narrow particle size distribution have been deeply characterized from a kinetic point of view. The 1.9 μm column showed excellent kinetic performance, comparable to that of the superficially porous one. These two columns also exhibit flatter c‐branches of the van Deemter curve compared to the 1.7 μm fully porous particles column, resulting in smaller loss of efficiency when they are operated at higher flow rates than the optimal ones. The independent evaluation of each contribution to band broadening has revealed that the difference in kinetic performance comes from the very small eddy dispersion contribution on the 1.9 μm column, surprisingly even lower than that of the superficially porous one. This finding suggests a very good packing of the monodisperse 1.9 μm column. On the other hand, the potential of 1.7 μm fully porous particles is completely broken down by the strong frictional heating effect already arising at relatively low flow rates.  相似文献   

4.
The objective of the present work was to investigate the chromatographic behavior of natural phenolic compounds in micellar and aqueous‐organic LC using a short column packed with 1.8 μm particles. Firstly, the effect of ACN and SDS on elution strength and selectivity was examined by isocratic submicellar (0–30% ACN/5% 1‐butanol/1–6 mM SDS) and micellar (0–30% ACN/5% 1‐butanol/40–60 mM SDS) systems. The varied concentrations of two modifiers in the mobile phases revealed different eluting power. Then, the application of organic modifier gradient was discussed in both submicellar and micellar LC using mobile phases of 4 mM SDS/5% 1‐butanol or 50 mM SDS/5% 1‐butanol containing ACN gradient from 0 to 30%, respectively. For micellar system, the separation was found to be better in gradient than isocratic elution. Additionally, the sensitivity of aqueous‐organic LC was examined. The mobile phase was a mixture of ACN and water employing gradient elution at a flow rate of 0.5 mL/min, with analysis time below 9 min. It was found that separation efficiency was significantly better compared with micellar LC. Besides, the aqueous‐organic LC has been applied to separation of various phenolic compounds in Yangwei granule or Radix Astragali samples.  相似文献   

5.
A simple and effective multi‐residue analysis method is presented for the extraction and determination of eleven quinolones (pipemidic acid, enoxacin, norfloxacin, ciprofloxacin, lomefloxacin, enrofloxacin, gatifloxacin, difloxacin, oxolinic acid, nalidixic acid and flumequine) in fish tissues. In this study, multi‐residue separations on four columns packed with 5 μm or sub‐2 μm particles were simultaneously developed for the purpose of comparison. Various gradients were optimized and best resolutions were achieved on each column. A short and sub‐2 μm particle‐sized HPLC column was chosen for its advantages in analysis time and column performance. Additionally, considering the matrix effect of the complex crude fish tissue, an effective extraction protocol was also established for sample pre‐treatment procedure. Good recoveries (71–98%) were obtained from samples fortified with a mix of eleven quinolones at three levels, with satisfactory relative standard deviations and limits of detection. As a result, the sub‐2 μm HPLC column and proposed analytical procedures have been evaluated and applied to the analysis of different fish tissues. Detectable residues were observed in 8 of 30 samples, at concentrations ranging from 4.74 to 23.27 μg/kg.  相似文献   

6.
In this work, a fast analytical method based on hydrophilic interaction liquid chromatographic-Ultraviolet detection (HILIC-UV) using a short narrow bore cyano-bonded silica column packed with fully porous sub-2?µm particles has been developed for simultaneous determination of eight pharmaceuticals in wastewater. The method involved pre-concentration and clean-up by solid phase extraction using Oasis HLB extraction cartridges. The analytes were separated using a mobile phase consisted of acetonitrile and 5?mM ammonium acetate buffer (95:5?v/v) with a flow rate of 0.6?mL/min. The chromatographic separation was optimized in order to achieve short analysis time and good resolution for all analytes in a single run. Each analyte was detected at its maximum wavelength for higher sensitivity. All analytes could be separated in 5.7?min with resolution ≥2.7. The optimized method was validated based on linearity, precision, detection and quantification limits, selectivity and accuracy. The detection limits of the studied pharmaceuticals ranged from 0.6 to 3?µg/L, while limits of quantification were in the range from 2 to 10?µg/L with UV detection. The developed method is fast, reliable, cost-effective and could be used for the analysis of the studied analytes in other matrices such as food, pharmaceutical preparations and biological fluids.  相似文献   

7.
Three HPLC columns packed with 3 μm, sub‐2 μm, and 2.7 μm Fused‐Core (superficially porous) particles were compared in separation performance using two natural product mixtures containing 15 structurally related components. The Ascentis ExpressTM C18 column packed with Fused‐Core particles showed an 18% increase in column efficiency (theoretical plates), a 76% increase in plate number per meter, a 65% enhancement in separation speed and a 19% increase in back pressure compared to the Atlantis T3TM C18 column packed with 3 μm particles. Column lot‐to‐lot variability for critical pairs in the natural product mixture was observed with both columns, with the Atlantis T3 column exhibiting a higher degree of variability. The Ascentis Express column was also compared with the AcquityTM BEH column packed with sub‐2 μm particles. Although the peak efficiencies obtained by the Ascentis Express column were only about 74% of those obtained by the Acquity BEH column, the 50% lower back pressure and comparable separation speed allowed high‐efficiency and high‐speed separation to be performed using conventional HPLC instrumentation.  相似文献   

8.
Due to the lack of chromophores in many macrolides, analytical methods based on mass spectrometry and electrochemical detection coupled to liquid chromatography have been suggested to be suitable for the quantification of macrolides in complex matrices. In this study, a simple and sensitive analytical method was established for the simultaneous measurement of nine macrolides in human urine by combining a sub‐3 μm superficially porous particle packed column with charged aerosol detection. After thorough investigation of various sample preparation methods, including two liquid–liquid extraction methods and four solid‐phase extraction methods, HLB solid‐phase extraction was selected and further optimized. Absolute recovery of the optimized sample preparation method ranged from 99.5–110.2%, indicating its very high extraction/clean‐up efficiency. For chromatography, parameters influencing macrolide separation were systematically optimized, and the resulting conditions allowed baseline separation of nine macrolides within 24 min using a very simple mobile phase. The established method was validated for linearity, limit of detection, limit of quantification, absolute recovery, and precision. Based on its limit of detection (0.025–0.100 μg/mL), the method had similar or greater sensitivity than most methods based on electrochemical detection. It was found that the current method was appropriate for application to real human urine samples after drug administration.  相似文献   

9.
A new hydrophilic interaction ultra‐performance LC method was established for the whole blood measurement of L‐ergothioneine. Chromatographic separation was achieved in a fairly short time, less than 4 min, on a 100 × 2.1 mm Acquity UPLC BEH HILIC 1.7 μm column with a mobile phase consisting of a mixture of 100 mmol/L ammonium acetate/ACN/water (5:85:10, v/v/v) that flowed isocratically at 0.250 mL/min. The LOD and the limit of quantification were 3.85 and 11.67 μmol/L, respectively. The method exhibited linearity in a concentration range of 15.63–1000 μmol/L (R2 > 0.999). Mean recovery was 96.34% whereas intraassay and interassay precision were 1.52 and 1.82% RSD, respectively. On the whole, the developed method is simple, fast, precise, accurate, and sensitive and may be useful for routine analyses.  相似文献   

10.
(+)‐Pinoresinol 4,4′‐di‐O‐βD ‐glucopyranoside ((+)‐PDG) is one of the major lignans with various pharmacological activities which could be isolated from Duzhong and other plant species. In this study, a diastereomeric impurity, (?)‐pinoresinol 4,4′‐di‐O‐βD ‐glucopyranoside ((?)‐PDG), the main impurity was identified in (+)‐PDG chemical reference substance (CRS) and a reliable chromatographic method for rapid purity determination of (+)‐PDG CRS was firstly developed. The optimal chromatographic condition was found to be using ACN/1,4‐dioxane–water (2.5:6:91.5, v/v/v) as mobile phase on a Waters Acquity UPLC HSS T3 column (2.1 mm×100 mm, 1.8 μm) with column temperature of 37°C. The method was validated and applied to determine the chromatographic purity of five (+)‐PDG CRS samples. The content of (?)‐PDG in four commercial (+)‐PDG CRS was 8.47–20.30%, whereas no (?)‐PDG was detected in our in‐house prepared (+)‐PDG CRS in which purity was confirmed to be 99.80%. The above results confirmed that this method is fast and highly efficient for purity determination of the (+)‐PDG CRS.  相似文献   

11.
A high‐performance liquid chromatographic method was developed for the analysis of 3'‐hydroxypterostilbene. This method involves the use of a Luna® C18 column with ultraviolet detection at 325 nm. The mobile phase consisted of acetonitrile, water and formic acid (50:50:0.01, v/v/v) with a flow rate of 0.8 mL/min. The calibration curves were linear over the range 0.5–100.0 µg/mL. The mean extraction efficiency was between 97.40 and 111.16%. The precision of the assay was 0.196–14.39% (RSD%), and within 15% at the limit of quantitation (0.5 µg/mL). The bias of the assay was <16% and within 15% at the limit of quantitation. This assay was successfully applied to pre‐clinical pharmacokinetic samples from rat urine and serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The determination of α‐ketoacid concentration is demanded to evaluate the absorption and metabolic behavior of compound α‐ketoacid tablets taken by chronic kidney disease patients. To eliminate the interference of endogenous substance of urine and enrich the analytes, a three‐phase hollow‐fiber liquid‐phase microextraction combined with ion‐pair high‐performance liquid chromatography method was established for the determination of d ,l ‐α‐hydroxymethionine calcium, d ,l ‐α‐ketoisoleucine calcium, α‐ketovaline calcium, α‐ketoleucine calcium, and α‐ketophenylalanine calcium of compound α‐ketoacid tablets in human urine samples. The extraction parameters, such as organic solvent, pH of donor phase and acceptor phase, stirring rate, and extraction time were optimized. Under the optimal conditions, the obtained enrichment factors were up to 11‐, 110‐, 198‐, 202‐, and 50‐fold, respectively. The calibration curves for these analytes were linear over the range of 0.1–10 mg/L for α‐ketovaline calcium, d ,l ‐α‐ketoisoleucine calcium, and α‐ketoleucine calcium, 0.5–10 mg/L for d ,l ‐α‐hydroxymethionine calcium, and α‐ketophenylalanine calcium with r > 0.99. The relative standard deviations (n = 5) were less than 6.27% and the LODs were 100.7, 10.0, 5.8, 7.8, and 8.6 μg/L (based on S/N = 3), respectively. Good recoveries from spiked urine samples (92–118%) were obtained. The proposed method demonstrated excellent sample clean‐up and analytes enrichment to determine the five components in human urine.  相似文献   

13.
Automated methods of PDMS/β‐CD/divinylbenzene‐coated stir plate sorptive extraction (SPSE) coupled to HPLC‐fluorescence detector were reported for the first time. Three automation modes, static SPSE, circular flow SPSE and continuous flow SPSE, were evaluated and critically compared with stir bar sorptive extraction by using six polycyclic aromatic hydrocarbons as model analytes. It was found that the operable sample volume for circular flow SPSE and continuous flow SPSE was larger than that for static SPSE. Under the same extraction conditions, continuous flow SPSE exhibited the highest extraction efficiencies in all automated modes and manual stir bar sorptive extraction for the target compounds. Compared with the manual operation (approximately 5–10 min), automated SPSE required a relatively short time (117–180 s) to finish sampling, washing and sample loading. Besides being labor‐saving and time‐saving, automated SPSE has other advantages, such as no time limit and non‐attended operation. The proposed continuous flow PDMS/β‐CD/divinylbenzene‐coated SPSE‐HPLC‐fluorescence detector was successfully applied to environmental water analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号