首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this paper, we characterize all extremal trees with the largest Laplacian spectral radius in the set of all trees with a given degree sequence. Consequently, we also obtain all extremal trees with the largest Laplacian spectral radius in the sets of all trees of order n with the largest degree, the leaves number and the matching number, respectively.  相似文献   

2.
The Estrada index of a graph G is defined as , where λ1,λ2,…,λn are the eigenvalues of its adjacency matrix. We determine the unique tree with maximum Estrada index among the set of trees with given number of pendant vertices. As applications, we determine trees with maximum Estrada index among the set of trees with given matching number, independence number, and domination number, respectively. Finally, we give a proof of a conjecture in [J. Li, X. Li, L. Wang, The minimal Estrada index of trees with two maximum degree vertices, MATCH Commun. Math. Comput. Chem. 64 (2010) 799-810] on trees with minimum Estrada index among the set of trees with two adjacent vertices of maximum degree.  相似文献   

3.
Various topological indices have been put forward in different studies, from biochemistry to pure mathematics. Among them, the Wiener index, the number of subtrees, and the Randi? index have received great attention from mathematicians. In the study of extremal problems regarding these indices among trees, one interesting phenomenon is that they share the same extremal tree structures. Much effort was devoted to the study of the correlations between these various indices. In this note we provide a common characteristic (the ‘semi-regular’ property) of these extremal structures, with respect to the above mentioned indices, among trees with a given maximum degree. This observation leads to a more unified approach for characterizing these extremal structures. As an application/example, we illustrate the idea by studying the extremal trees, regarding the sum of distances between all pairs of leaves of a tree, a new index, which recently appeared in phylogenetic tree reconstruction, and the study of the neighborhood of trees.  相似文献   

4.
A tanglegram consists of two binary rooted trees with the same number of leaves and a perfect matching between the leaves of the trees. We show that the two halves of a random tanglegram essentially look like two independently chosen random plane binary trees. This fact is used to derive a number of results on the shape of random tanglegrams, including theorems on the number of cherries and generally occurrences of subtrees, the root branches, the number of automorphisms, and the height. For each of these, we obtain limiting probabilities or distributions. Finally, we investigate the number of matched cherries, for which the limiting distribution is identified as well.  相似文献   

5.
We determine the (unique) weighted tree with the largest spectral radius with respect to the adjacency and Laplacian matrix in the set of all weighted trees with a given degree sequence and positive weight set. Moreover, we also derive the weighted trees with the largest spectral radius with respect to the matrices mentioned above in the sets of all weighted trees with a given maximum degree or pendant vertex number and so on.  相似文献   

6.
A semiregular tree is a tree where all non-pendant vertices have the same degree. Among all semiregular trees with fixed order and degree, a graph with minimal (adjacency/Laplacian) spectral radius is a caterpillar. Counter examples show that the result cannot be generalized to the class of trees with a given (non-constant) degree sequence.  相似文献   

7.
For two polyhedra associated with packing subtrees of a tree, the structure of the vertices is described, and efficient algorithms are given for optimisation over the polyhedra. For the related problem of covering a tree by subtrees, a reduction to a packing problem, and an efficient algorithm are presented when the family of trees is “fork-free”.  相似文献   

8.
A generalization of the Prüfer coding of trees is given providing a natural correspondence between the set of codes of spanning trees of a graph and the set of codes of spanning trees of theextension of the graph. This correspondence prompts us to introduce and to investigate a notion ofthe spanning tree volume of a graph and provides a simple relation between the volumes of a graph and its extension (and in particular a simple relation between the spanning tree numbers of a graph and its uniform extension). These results can be used to obtain simple purely combinatorial proofs of many previous results obtained by the Matrix-tree theorem on the number of spanning trees of a graph. The results also make it possible to construct graphs with the maximal number of spanning trees in some classes of graphs.  相似文献   

9.
《Quaestiones Mathematicae》2013,36(4):533-549
Abstract

The bipartiteness of a graph is the minimum number of vertices whose deletion from G results in a bipartite graph. If a graph invariant decreases or increases with addition of edges of its complement, then it is called a monotonic graph invariant. In this article, we determine the extremal values of some famous monotonic graph invariants, and characterize the corresponding extremal graphs in the class of all connected graphs with a given vertex bipartiteness.  相似文献   

10.
This paper studies the problem of estimating the spectral radius of trees with the given number of vertices and maximum degree. We obtain the new upper bounds on the spectral radius of the trees, and the results are the best upper bounds expressed by the number of vertices and maximum degree, at present.  相似文献   

11.
In this paper, we give a complete characterization of the extremal graphs with maximal Laplacian spectral radius among all unicyclic graphs with given order and given number of pendent vertices. Then we study the Laplacian spectral radius of unicyclic graphs with given independence number and characterize the extremal graphs completely.  相似文献   

12.
A vertex υ in a set S is said to be cost effective if it is adjacent to at least as many vertices in V\S as it is in S and is very cost effective if it is adjacent to more vertices in V\S than to vertices in S. A dominating set S is (very) cost effective if every vertex in S is (very) cost effective. The minimum cardinality of a (very) cost effective dominating set of G is the (very) cost effective domination number of G. Our main results include a quadratic upper bound on the very cost effective domination number of a graph in terms of its domination number. The proof of this result gives a linear upper bound for hereditarily sparse graphs which include trees. We show that no such linear bound exists for graphs in general, even when restricted to bipartite graphs. Further, we characterize the extremal trees attaining the bound. Noting that the very cost effective domination number is bounded below by the domination number, we show that every value of the very cost effective domination number between these lower and upper bounds for trees is realizable. Similar results are given for the cost effective domination number.  相似文献   

13.
We consider the only remaining unsolved case n0 (mod k) for the largest kth eigenvalue λk.of trees with n vertices. In this paper, the conjecture for this problem in [Shao Jia-yu, On the largest kth eignevalues of trees, Linear Algebra Appl. 221 (1995) 131] is proved and (from this) the complete solution to this problem, the best upper bound and the extremal trees of λk, is given in general cases above.  相似文献   

14.
A fundamental problem in many areas of classification, and particularly in biology, is the reconstruction of a leaf-labeled tree from just a subset of its induced subtrees. Without loss of generality, we may assume that these induced subtrees all have precisely four leaves. Of particular interest is determining whether a collection of quartet subtrees uniquely defines a parent tree. Here, we solve this problem in the case where the collection of quartet trees is of minimal size, by studyingencodings of binary trees by such quartet trees. We obtain a characterization of minimal encodings that exploits an underlying patchwork structure. As we will show elsewhere, this allows one to obtain a polynomial time algorithm for certain instances of the problem of reconstructing trees from subtrees.Supported by DFG — Graduiertenkolleg Strukturbildungsprozesse, Forschungsschwerpunkt Mathematisierung, University of Bielefeld, Germany.Supported by the New Zealand Marsden Fund.  相似文献   

15.
The splittance of an arbitrary graph is the minimum number of edges to be added or removed in order to produce a split graph (i.e. a graph whose vertex set can be partitioned into a clique and an independent set). The splittance is seen to depend only on the degree sequence of the graph, and an explicit formula for it is derived. This result allows to give a simple characterization of the degree sequences of split graphs. Worst cases for the splittance are determined for some classes of graphs (the class of all graphs, of all trees and of all planar graphs).  相似文献   

16.
The purpose of this paper is to describe a method for embedding binary trees into hypercubes based on an iterative embedding into their subgraphs induced by dense sets. As a particular application, we present a class of binary trees, defined in terms of size of their subtrees, whose members allow a dilation two embedding into their optimal hypercubes. This provides a partial evidence in favor of a long-standing conjecture of Bhatt and Ipsen which claims that such an embedding exists for an arbitrary binary tree.  相似文献   

17.
Abstract

We determine the minimum number of faulty links in a 5-dimensional hypercube so that no 2-dimensional subcube is fault free. The degree sequences of some related extremal graphs are also determined.  相似文献   

18.
It is now well-documented that the structure of evolutionary relationships between a set of present-day species is not necessarily tree-like. The reason for this is that reticulation events such as hybridizations mean that species are a mixture of genes from different ancestors. Since such events are relatively rare, a fundamental problem for biologists is to determine the smallest number of hybridization events required to explain a given (input) set of data in a single (hybrid) phylogeny. The main results of this paper show that computing this smallest number is APX-hard, and thus NP-hard, in the case the input is a collection of phylogenetic trees on sets of present-day species. This answers a problem which was raised at a recent conference (Phylogenetic Combinatorics and Applications, Uppsala University, 2004). As a consequence of these results, we also correct a previously published NP-hardness proof in the case the input is a collection of binary sequences, where each sequence represents the attributes of a particular present-day species. The APX-hardness of these problems means that it is unlikely that there is an efficient algorithm for either computing the result exactly or approximating it to any arbitrary degree of accuracy.  相似文献   

19.
A pebbling move on a graph consists of taking two pebbles off of one vertex and placing one pebble on an adjacent vertex. In the traditional pebbling problem we try to reach a specified vertex of the graph by a sequence of pebbling moves. In this paper we investigate the case when every vertex of the graph must end up with at least one pebble after a series of pebbling moves. The cover pebbling number of a graph is the minimum number of pebbles such that however the pebbles are initially placed on the vertices of the graph we can eventually put a pebble on every vertex simultaneously. We find the cover pebbling numbers of trees and some other graphs. We also consider the more general problem where (possibly different) given numbers of pebbles are required for the vertices.  相似文献   

20.
It is shown that the lower irredundance number and secure domination number of an n vertex tree T with maximum degree Δ?3, are bounded below by 2(n+1)/(2Δ+3)(TK1,Δ) and (Δn+Δ-1)/(3Δ-1), respectively. The bounds are sharp and extremal trees are exhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号