首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present contribution is focused on the evaluation of a high‐speed triple quadrupole mass spectrometer, carried out under moderately fast GC conditions (analysis time: 16.6 min). The mass spectrometric instrument can be operated under high‐speed GC conditions, in both full‐scan (maximum scan speed: 20 000 amu/s) and multiple reaction monitoring (MRM) modes (minimum dwell time: 0.01 s). Additionally, the mass spectrometric system can generate full scan and MRM information, simultaneously and rapidly. A headspace solid‐phase microextraction with fast GC coupled to triple quadrupole MS approach was developed for the: (i) qualitative untargeted analysis of brewed tea volatiles, and (ii) MRM qualitative and quantitative analysis of targeted volatiles (also in brewed tea), namely 30 phytosanitary contaminants. The performance of the triple quadrupole instrument was satisfactory both for identification and quantification purposes. Furthermore, the method sensitivity was more than sufficient for the requirements of current legislation. Method validation, related to the MRM analysis, was performed considering: precision of quantification data (maximum coefficient of variation value: 12.0%) and quantification/qualification ion ratios (maximum coefficient of variation value: 14.4%), along with limits of detection (4 parts per trillion–5 parts per billion range) and quantification (14 parts per trillion–16 parts per billion range).  相似文献   

2.
A new type of quadrupole linear ion trap mass spectrometer, Q TRAP trade mark LC/MS/MS system (Q TRAP trade mark ), was evaluated for its performance in two studies: firstly, the in vitro metabolism of gemfibrozil in human liver microsomes, and, secondly, the quantification of propranolol in rat plasma. With the built-in information-dependent-acquisition (IDA) software, the instrument utilizes full scan MS in the ion trap mode and/or constant neutral loss scans as survey scans to trigger product ion scan (MS(2)) and MS(3) experiments to obtain structural information of drug metabolites 'on-the-fly'. Using this approach, five metabolites of gemfibrozil were detected in a single injection. This instrument combines some of the unique features of a triple quadrupole mass spectrometer, such as constant neutral loss scan, precursor ion scan and multiple reaction monitoring (MRM), together with the capability of a three-dimensional ion trap. Therefore, it becomes a powerful instrument for metabolite identification. The fast duty cycle in the ion trap mode allows the use of full product ion scan for quantification. For the quantification of propranolol, both MRM mode and full product ion scan in the ion trap mode were employed. Similar sensitivity, reproducibility and linearity values were established using these two approaches. The use of the product ion scan mode for quantification provided a convenient tool in selecting transitions for improving selectivity during the method development stage.  相似文献   

3.
The fast imaging of complete rat sections by matrix‐assisted laser desorption/ionization on a triple quadrupole linear ion trap is demonstrated. After administration of the pharmaceutical compound (MW = 467.4 u) at 0.5 mg/kg the parent drug could be identified in full scan mode and in the enhanced product ion spectrum mode. Furthermore, the precursor ion mode could also be used to monitor the presence of the parent drug in the tissue section. In the selected reaction monitoring mode, using a laser frequency of 1000 Hz and a rastering speed of about 18 mm/s, a targeted representative image of drug distribution in a rat section could be obtained in less than 15 min. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The objective of our work was to identify known and unknown metabolites of the drug NTBC (2‐(2‐nitro‐4‐trifluoromethylbenzoyl)‐1,3‐cyclohexanedione) in urine from patients during the treatment of hereditary tyrosinemia type 1 (HT‐1) disease, a severe inborn error of tyrosine metabolism. Two different mass spectrometric techniques, a triple stage quadrupole and an LTQ‐Orbitrap (Fourier transform mass spectrometry (FTMS)), were used for the identification and the structural elucidation of the detected metabolites. Initially, the mass spectrometric (MS) approach consisted of the precursor ion scan detection of the selected product ions, followed by the corresponding collision‐induced dissociation (CID) fragmentation analysis (MS2) for the targeted selected reaction monitoring (SRM) mode. Subsequently, accurate and high‐resolution full scan and MS/MS measurements were performed on the possible metabolites using the LTQ‐Orbitrap. Final confirmation of the identified metabolites was achieved by measuring commercially supplied or laboratory‐synthesized standards. Altogether six metabolites, including NTBC itself, were extracted, detected and identified. In addition, two new NTBC metabolites were unambiguously identified as amino acid conjugates, namely glycine‐NTBC and β‐alanine‐NTBC. These identifications were based on their characteristics of chromatographic retention times, protonated molecular ions, elemental compositions, product ions (using CID and higher‐energy C‐trap dissociation (HCD) techniques) and synthesized references. The applied MS strategy, based on two different MS platforms (LC/MS/MS and FTMS), allowed the rapid identification analysis of the drug metabolites from human extracts and could be used for pharmaceutical research and drug development. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The quantitative capabilities of a linear ion trap high‐resolution mass spectrometer (LTQ‐Orbitrap™) were investigated using full scan mode bracketing the m/z range of the ions of interest and utilizing a mass resolution (mass/FWHM) of 15000. Extracted ion chromatograms using a mass window of ±5–10 mmu centering on the theoretical m/z of each analyte were generated and used for quantitation. The quantitative performance of the LTQ‐Orbitrap™ was compared with that of a triple quadrupole (API 4000) operating using selected reaction monitoring (SRM) detection. Comparable assay precision, accuracy, linearity and sensitivity were observed for both approaches. The concentrations of actual study samples from 15 Merck drug candidates reported by the two methods were statistically equivalent. Unlike SRM being a tandem mass spectrometric (MS/MS)‐based detection method, a high resolution mass spectrometer operated in full scan does not need MS/MS optimization. This approach not only provides quantitative results for compounds of interest, but also will afford data on other analytes present in the sample. An example of the identification of a major circulating metabolite for a preclinical development study is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
An analytical assay has been developed and validated for ultrafast and high-throughput mass spectrometric determination of pemetrexed concentrations in plasma using matrix assisted laser desorption/ionization–triple quadrupole–tandem mass spectrometry. Patient plasma samples spiked with the internal standard methotrexate were measured by multiple reaction monitoring. The detection limit was 0.4 fmol/μL, lower limit of quantification was 0.9 fmol/μL, and upper limit of quantification was 60 fmol/μL, respectively. Overall observed pemetrexed concentrations in patient samples ranged between 8.7 (1.4) and 142.7 (20.3)?pmol/μL (SD). The newly developed mass spectrometric assay is applicable for (routine) therapeutic drug monitoring of pemetrexed concentrations in plasma from non-small cell lung cancer patients.  相似文献   

7.
Methods based on triple quadrupole tandem mass spectrometry have been widely used and reported as highly selective and sensitive methods for quantifying substances of herbal medicines. However, most of them were limited to targeted components, due to the difficulties to optimize the multiple reaction monitoring transitions without authentic standards. This study proposed a novel strategy for non‐targeted optimization of multiple reaction monitoring method based on the diagnostic ion guided family classifications, tandem mass spectrometry database establishment, and transitions and collision energy screening. Applying this strategy, 59 Fritillaria alkaloids in Fritillariae Ussuriensis Bulbus have been classified, and 51 of these Fritillaria alkaloids were successfully detected by the optimal multiple reaction monitoring method. For semi‐quantification, the easy‐to‐obtain Fritillaria alkaloids of each type, such as verticinone for cevanine type and peimisine for jervine type, were used as the reference standards to calibrate the other Fritillaria alkaloids in the same type. The method was demonstrated a good linearity (R2 > 0.998) with satisfactory accuracy and precision, and the lower limits of quantification of verticinone and peimisine were estimated to be 0.076 and 0.216 pg, respectively. In addition, the results suggested that the proposed strategy might obtained high quality metabolomics data in discrimination of Fritillaria unibracteata and Fritillaria ussuriensis.  相似文献   

8.
An ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method for fast‐throughput analysis of eight anabolic and androgenic steroids (AAS) in equine plasma is reported. Analytes were recovered by liquid‐liquid extraction using methyl tert‐butyl ether, separated on a 1.9 µm C18 reversed‐phase column, and analyzed in positive electrospray ionization mode on a triple quadrupole mass spectrometer with selected reaction monitoring (SRM) and full product ion scans. Two SRM ion transitions were monitored for each AAS during screening to obtain highly selective screening results. Full product ion spectra of excellent quality for AAS, at 100 pg/0.5 mL in plasma, devoid of interfering spectra from impurities in plasma, were obtained. To our knowledge, this is the first report on the acquisition of full product ion spectra at such a low analyte concentration and plasma volume using a triple quadrupole instrument. In addition to product ion intensity ratios obtained from three SRM scans for identifying AAS in equine plasma, full product ion spectra were used as supporting evidence for confirmation. For quantification, deuterium‐labeled testosterone and stanozolol were used as internal standards (ISs). The limits of detection, quantification and confirmation were 6.25–12.5 pg/0.5 mL, 25 pg/0.5 mL and 50–100 pg/0.5 mL, respectively. There was no significant matrix effect on the analysis of all eight AAS. Intra‐day precision and accuracy were 2–15% and 91–107%, respectively. Inter‐day precision and accuracy were 1–21% and 94–110%, respectively. Total analysis time was 5 min. To date, the method has been successfully used in the analysis of >12 000 samples for AAS in plasma samples from racehorses competing in the State of Pennsylvania. The method is fast, selective, reproducible, and reliable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
An ultra‐fast high‐performance LC‐ESI‐MS/MS method was developed for the analysis and quantification of caffeoylquinic acid derivatives, including chlorogenic acid, 1,3‐di‐O‐caffeoylquinic acid (cynarin) and 1,5‐di‐O‐caffeoylquinic acid, in artichoke (Cynara scolymus L.) heads and leaves. The rapid separation (less than 4 min) was achieved based on a Halo fused core C18‐silica column (50 mm×2.1 mm id, 2.7 μm). The target compounds were detected and quantified by a triple‐quadrupole mass spectrometer in multiple‐reaction monitoring mode. The calibration function is linear from 0.06 to 2800 ng/mL for chlorogenic acid, 0.3–3000 ng/mL for cynarin and 0.24–4800 ng/mL for 1,5‐di‐O‐caffeoylquinic acid, respectively. The average recoveries ranged from 92.1 to 113.2% with RSDs ≤6.5%. Moreover, four batches of artichoke head and leaf extracts were analyzed using the established method. The results indicated that the Halo fused core column provided much faster separations and higher sample throughput without sacrificing column ruggedness and reliability, and triple‐quadrupole MS provided extraordinarily lower LOQs for most of the target analytes. Comparing to conventional quantitative approaches, the established method was fast, sensitive and reliable for the determination of caffeoylquinic acid derivatives in artichoke.  相似文献   

10.
于胜良  杨桂朋  付萌 《色谱》2007,25(4):581-585
建立了用凝胶渗透色谱净化-气相色谱/串联质谱分析蘑菇中36种农药残留的方法。蘑菇中的待测农药组分在30 ℃条件下用乙酸乙酯提取,高速匀浆后通过凝胶渗透色谱净化;选用填料为中性多孔的聚苯乙烯二乙烯基苯微球体的S-X3玻璃柱(22 g,19 cm×2 cm)作为凝胶渗透色谱净化柱,流动相为乙酸乙酯-环己烷(体积比为1∶1)溶液,流速5 mL/min;收集第7~15 min流出的液体用气相色谱-三重四极杆串联质谱仪测定。在0.01~1.0 mg/L的质量浓度范围内,各种农药标准溶液的线性相关系数均大于0.99。在样品中添加36种农药(添加水平为0.01,0.05,0.10 mg/kg)的混合标准溶液,平均回收率为72.6%~117.1%,相对标准偏差为2.0%~10.8%(n=5),最低检出限为 0.1~0.7 μg/kg,最低定量限为 0.2~2 μg/kg。  相似文献   

11.
The use of marker-peptides, measured by LC-MS/MS, is investigated for the quantitative analysis of proteins. To that end, cystatin C is chosen as a model protein. It not only functions as a proof of concept protein but the growing interest in cystatin C as a new marker of kidney failure provides a practical application at the same time. The use of trypsin-based proteolysis, to obtain so-called marker-peptides, simplifies the quantification of a protein to the quantification of a single or a number of peptides. Reproducibility of the trypsin proteolysis procedure is vital and has been optimised. A number of the marker-peptides obtained are selected for LC-MS(/MS) analysis. They are completely separated by high-pressure LC allowing maximum selectivity and mass spectrometric multiple reaction monitoring sensitivity. By doing so, linear calibration curves can be obtained for cystatin C over two orders of magnitude. Experiments have been performed on a triple quadrupole mass spectrometer by single ion monitoring (maximum sensitivity) as well as by multiple reaction monitoring (maximum specificity).  相似文献   

12.
A hybrid linear ion trap/triple quadrupole mass spectrometer was used to demonstrate the value of collecting full scan qualitative data during quantitative analysis of target compounds. We present examples of the additional information that can be obtained from plasma samples analyzed primarily for target compound concentrations. This information includes detection of circulating metabolites, dosing vehicle, interfering matrix components, and potential interfering drug conjugates. Additionally, the quantitative results from selected reaction monitoring (SRM) analysis and from combined full scan and SRM analysis (SRM/EMS) were compared. The quantitative data in both scan modes are acceptable in terms of sensitivity, accuracy and precision. One can conclude from this work that the hybrid linear ion trap/triple quadrupole mass analyzer can provide in a single analysis both useful qualitative data, and accurate and precise quantitative data from the samples routinely prepared and analyzed for target drug concentrations.  相似文献   

13.
In the present study, we report the application of LC‐MS based on two different LC‐MS systems to mycotoxin analysis. The mycotoxins were extracted with an ACN/water/acetic acid mixture and directly injected into a LC‐MS/MS system without any dilution procedure. First, a sensitive and reliable HPLC‐ESI‐MS/MS method using selected reaction monitoring on a triple quadrupole mass spectrometer (TSQ Quantum Ultra AM) has been developed for determining 32 mycotoxins in crude extracts of wheat and maize. This method was operated both in positive and in negative ionization modes in two separate chromatographic runs. The method was validated by studies of spiked recoveries, linearity, matrix effect, intra‐assay precision and sensitivity. Further, we have developed and evaluated a method based on accurate mass measurements of extracted target ions in full scan mode using micro‐LC‐LTQ‐Orbitrap as a tool for fast quantitative analysis. Both instruments exhibited very high sensitivity and repeatability in positive ionization mode. Coupling of micro‐LC to Orbitrap technology was not applicable to the negatively ionizable compounds. The LC triple quadrupole MS method has proved to be stable in quantitation, as it is with respect to the matrix effects of grain samples.  相似文献   

14.
Anabolic and androgenic steroids (AASs) are synthetic substances related to the primary male sex hormone, testosterone. AASs can be abused in both human and equine sports and, thus, are banned by the International Olympic Committee and the Association of Racing Commissioners International (ARCI). Enforcement of the ban on the use of AASs in racehorses during competition requires a defensible and robust method of analysis. To address this requirement, a high‐throughput ultra high‐performance liquid chromatography–mass spectrometric (UHPLC–MS) method was developed for the detection, quantification and confirmation of 55 AASs in equine plasma. AASs were recovered from equine plasma samples by liquid–liquid extraction with methyl tert‐butyl ether (MTBE). Analytes were chromatographically separated on a sub‐2 µm particle size C18 column with a mobile phase gradient elution and detected by selected‐reaction monitoring (SRM) on a triple quadrupole mass spectrometer. AASs with isobaric precursor ions were either chromatographically resolved or mass spectrometrically differentiated by unique precursor‐to‐product ion transitions. A few of them that could not be resolved by both approaches were differentiated by intensity ratios of three major product ions. All the epimer pairs, testosterone and epitestosterone, boldenone and epiboldenone, nandrolone and epinandrolone, were chromatographically base‐line separated. The limit of detection and that of quantification was 50 pg/ml for most of the AASs, and the limit of confirmation was 100–500 pg/ml. Full product ion spectra of AASs at concentrations as low as 100–500 pg/ml in equine plasma were obtained using the triple quadrupole instrument, to provide complementary evidentiary data for confirmation. The method is sensitive and selective for the detection, quantification and confirmation of multiple AASs in a single analysis and will be useful in the fight against doping of racehorses with AASs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This paper describes a new strategy that utilizes the fast trap mode scan of the hybrid triple quadrupole linear ion trap (QqQ(LIT)) for the identification of drug metabolites. The strategy uses information-dependent acquisition (IDA) where the enhanced mass scan (EMS), the trap mode full scan, was used as the survey scan to trigger multiple dependent enhanced product ion scans (EPI), the trap mode product ion scans. The single data file collected with this approach not only includes full scan data (the survey), but also product ion spectra rich in structural information. By extracting characteristic product ions from the dependent EPI chromatograms, we can provide nearly complete information for in vitro metabolites that otherwise would have to be obtained by multiple precursor ion scan (prec) and constant neutral loss (NL) analysis. This approach effectively overcomes the disadvantages of traditional prec and NL scans, namely the slow quadrupole scan speed, and possible mass shift. Using nefazodone (NEF) as the model compound, we demonstrated the effectiveness of this strategy by identifying 22 phase I metabolites in a single liquid chromatography/tandem mass spectrometry (LC/MS/MS) run. In addition to the metabolites reported previously in the literature, seven new metabolites were identified and their chemical structures are proposed. The oxidative dechlorination biotransformation was also discovered which was not reported in previous literature for NEF. The strategy was further evaluated and worked well for the fast discovery setting when a ballistic gradient elution was used, as well as for a simulated in vivo setting when the incubated sample (phase I metabolites) was spiked to control human plasma extract and control human urine.  相似文献   

16.
Sulfur fumigation may induce the decrease or the chemical transformation of some active ingredients of traditional Chinese medicines in vitro. Whether sulfur fumigation can cause the pharmacokinetic changes of the active ingredients in vivo is related to the efficacy and the safety of Chinese medicines’ application clinically. A sensitive, specific, and accurate method for the simultaneous determination of paeoniflorin, ferulic acid, senkyunolide A, and senkyunolide I in rat plasma by ultra high performance liquid chromatography coupled with triple quadrupole mass spectrometry was developed to evaluate the influence of sulfur fumigation to Si Wu Tang for the first time. Each compound was extracted from plasma samples by liquid–liquid extraction with ethyl acetate, and the chromatographic separation was accomplished on an Agilent Extend C18 column with a linear gradient elution. The mass spectrometric detection and analysis were performed by using an AB Sciex triple quadrupole 5500 mass spectrometer in multiple reaction monitoring mode. The validated method was successfully applied to a pharmacokinetic study of four compounds in rats after oral administration of sun‐dried and sulfur‐fumigated Si Wu Tang. The results provided a meaningful basis for evaluating the affection of sulfur fumigation to the clinical application and the efficacy of Si Wu Tang.  相似文献   

17.
Fentanyl is a potent analgesic drug in relieving chronic pain in patients. In this report, we present a simple, reliable and sensitive LC–ID/MS method for the quantification of fentanyl in human plasma. LC‐ID/MS analysis was carried out on a triple quadrupole mass spectrometer operated in positive electrospray ionization multiple‐reaction‐monitoring using the transitions m/z 337.6 → 187.9 for fentanyl and m/z 342.6 → 187.9 for the internal standard (D5‐fentanyl). The calibration curve covered the range 0.02–10 ng/mL. The intra‐ and inter‐batch precision were less than 6.739 and 3.126% for fentanyl and IS, with accuracy from 94.16 to 102.0%. The lower limit of quantification was identifiable and reproducible at 0.02 ng/mL. The validated method offered increased sensitivity and wide linear concentration range. This method was successfully adopted for the evaluation of bioequivalence of two fentanyl transdermal preparations after single dose administration to 20 Chinese pain‐patients. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
本文采用高效液相色谱-电喷雾串联四极杆质谱法对人口服毛果芸香碱后的尿样的代谢产物进行了研究.  相似文献   

19.
An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high‐performance thin‐layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read‐out resolution, detection limits, and surface type are discussed. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

20.
A sensitive, rapid and selective ultra‐performance liquid chromatography–tandem mass spectrometric (UPLC‐MS/MS) method was developed for the determination and pharmacokinetic study of domperidone in human plasma. Diphenhydramine was used as the internal standard. Plasma sample pretreatment involved a one‐step liquid–liquid extraction with a mixture of diethyl ether–dichloromethane (3:2, v/v). The analysis was carried out on an Acquity UPLCTM BEH C18 column. The mobile phase consisted of methanol–water containing 10 mmol/L ammonium acetate and 0.5% (v/v) formic acid (60:40, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode via electrospray ionizationsource with positive mode. Each plasma sample was chromatographed within 2.1 min. The standard curves for domperidone were linear (r2 ≥ 0.99) over the concentration range of 0.030–31.5 ng/mL with a lower limit of quantification of 0.030 ng/mL. The intra‐ and inter‐day precision (relative standard deviation) values were not higher than 13% and accuracy (relative error) was from ?7.6 to 1.2% at three quality control levels. The method herein described was superior to previous methods and was successfully applied to the pharmacokinetic study of domperidone in healthy Chinese volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号