首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

2.
A novel, simple, and rapid vortex‐assisted hollow‐fiber liquid‐phase microextraction method was developed for the simultaneous extraction of albendazole and triclabendazole from various matrices before their determination by high‐performance liquid chromatography with fluorescence detection. Several factors influencing the microextraction efficiency including sample pH, nature and volume of extraction solvent, ionic strength, vortex time, and sample volume were investigated and optimized. Under the optimal conditions, the limits of detection were 0.08 and 0.12 μg/L for albendazole and triclabendazole, respectively. The calibration curves were linear in the concentration ranges of 0.3–50.0 and 0.4–50.0 μg/L with the coefficients of determination of 0.9999 and 0.9995 for albendazole and triclabendazole, respectively. The interday and intraday relative standard deviations for albendazole and triclabendazole at three concentration levels (1.0, 10.0, and 30.0 μg/L) were in the range of 6.0–11.0 and 5.0–7.9%, respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, milk, honey, and urine samples.  相似文献   

3.
Switchable‐hydrophilicity solvent liquid‐liquid microextraction and dispersive liquid‐liquid microextraction were compared for the extraction of piperine from Piper nigrum L. prior to its analysis by using high‐performance liquid chromatography with UV detection. Under optimum conditions, limits of detection and quantitation were found as 0.2–0.6 and 0.7–2.0 μg/mg with the two methods, respectively. Calibration graphs showed good linearity with coefficients of determination (R2) higher than 0.9962 and percentage relative standard deviations lower than 6.8%. Both methods were efficiently used for the extraction of piperine from black and white pepper samples from different origins and percentage relative recoveries ranged between 90.0 and 106.0%. The results showed that switchable‐hydrophilicity solvent liquid‐liquid microextraction is a better alternative to dispersive liquid‐liquid microextraction for the routine analysis of piperine in food samples. A novel scaled‐up dispersive liquid‐liquid microextraction method was also proposed for the isolation of piperine providing a yield of 102.9 ± 4.9% and purity higher than 98.0% as revealed by NMR spectroscopy.  相似文献   

4.
A hydroxyl‐functionalized ionic liquid, 1‐hydroxyethyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid‐phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H‐bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0–1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0–1000 μg/L for estriol. The detection limits were in the range of 1.7–3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples.  相似文献   

5.
A new approach for the development of a dispersive liquid–liquid microextraction followed by GC with flame ionization detection was proposed for the determination of phthalate esters and di‐(2‐ethylhexyl) adipate in aqueous samples. In the proposed method, solid and liquid phases were used as the disperser and extractant, respectively, providing a simple and fast mode for the extraction of the analytes into a small volume of an organic solvent. In this method, microliter levels of an extraction solvent was added onto a sugar cube and it was transferred into the aqueous phase containing the analytes. By manual shaking, the sugar was dissolved and the extractant was released into the aqueous phase as very tiny droplets to provide a cloudy solution. Under optimized conditions, the proposed method showed good precision (RSD less than 5.2%), high enrichment factors (266–556), and low LODs (0.09–0.25 μg/L). The method was successfully applied for the determination of the target analytes in different samples, and good recoveries (71–103%) were achieved for the spiked samples. No need for a disperser solvent and higher enrichment factors compared with conventional dispersive liquid–liquid microextraction and low cost and short sample preparation time are other advantages of the method.  相似文献   

6.
A novel method has been developed for the analysis of zearalenone in maize products by vortex‐assisted ionic‐liquid‐based dispersive liquid–liquid microextraction combined with HPLC and fluorescence detection. Maize samples were extracted with methanol/water (80:20, v/v) and the extraction solution was then used as the dispersive solvent in the microextraction procedure. The analyte was rapidly transmitted to a small volume of ionic liquid and was determined by HPLC. Various parameters affecting the recovery of the mycotoxin were investigated, such as the type and volume of the extraction solvent, the type and volume of the dispersive solvent, the pH of the aqueous phase, the salt addition, and the time of vortex and centrifugation. Under the optimal experimental conditions, a good linearity of the analyte was obtained in the range of 1.0–1000.0 μg/L with the correlation coefficient of 0.9998. The limit of detection (S/N = 3) and quantification (S/N = 10) were 0.3 and 1.0 μg/kg, and the mean recoveries ranged from 83.5 to 94.9%, with a relative standard deviation less than 5.0%. The proposed method was demonstrated to be simple, cheap, quick, and highly selective and was successfully applied to the determination of zearalenone in maize products.  相似文献   

7.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

8.
Ionic‐liquid‐based dispersive liquid–liquid microextraction in combination with high‐performance liquid chromatography and diode array detection has been proposed for the simultaneous analysis of four multiclass pesticide residues including carbaryl, methidathion, chlorothalonil, and ametryn from water samples. The major experimental parameters including the type and volume of ionic liquid, sample pH, type, and volume of disperser solvent and cooling time were investigated and optimum conditions were established. Under the optimum experimental conditions, limits of detection and quantification of the method were in the range of 0.1–1.8 and 0.4–5.9 μg/L, respectively, with satisfactory enrichment factors ranging from 10–20. The matrix‐matched calibration curves, which were constructed for lake water, as a representative matrix were linear over wide range with coefficients of determination of 0.996 or better. Intra‐ and interday precisions, expressed as relative standard deviations, were in the range of 1.1–9.7 and 3.1–7.8%, respectively. The relative recoveries of the spiked environmental water samples at one concentration level were in the range of 77–102%. The results of the present study revealed that the proposed method is simple, fast, and uses environmentally friendly extraction solvent for the analysis of the target pesticide residues in environmental water samples.  相似文献   

9.
Three modes of liquid–liquid based microextraction techniques – namely auxiliary solvent‐assisted dispersive liquid–liquid microextraction, auxiliary solvent‐assisted dispersive liquid–liquid microextraction with low‐solvent consumption, and ultrasound‐assisted emulsification microextraction – were compared. Picric acid was used as the model analyte. The determination is based on the reaction of picric acid with Astra Phloxine reagent to produce an ion associate easily extractable by various organic solvents, followed by spectrophotometric detection at 558 nm. Each of the compared procedures has both advantages and disadvantages. The main benefit of ultrasound‐assisted emulsification microextraction is that no hazardous chlorinated extraction solvents and no dispersive solvent are necessary. Therefore, this procedure was selected for validation. Under optimized experimental conditions (pH 3, 7 × 10?5 mol/L of Astra Phloxine, and 100 μL of toluene), the calibration plot was linear in the range of 0.02–0.14 mg/L and the LOD was 7 μg/L of picric acid. The developed procedure was applied to the analysis of spiked water samples.  相似文献   

10.
Selenium is an important element for human health, and it is present in many natural drinks and foods. Present study described a new method using dispersive liquid–liquid microextraction prior to high‐performance liquid chromatography with a UV variable wavelength detector for the determination of the total selenium, Se(IV), Se(VI), and total organoselenium in tea samples. In the procedure, 2,3‐diaminonaphthalene was used as the chelating reagent, 400 μL acetonitrile was used as the disperser solvent and 60 μL chlorobenzene was used as the extraction solvent. The complex of Se(IV) and 2,3‐diaminonaphthalene in the final extracted phase was analyzed by high‐performance liquid chromatography. The factors influencing the derivatization and microextraction were investigated. Under the optimal conditions, the limit of detection was 0.11 μg/L for Se(IV) and the linearity range was in the range of 0.5–40 μg/L. This method was successfully applied to the determination of selenium in four tea samples with spiked recoveries ranging from 91.3 to 100%.  相似文献   

11.
A novel dispersive liquid‐liquid microextraction that combines self‐induced acid‐base effervescent reaction and manual shaking, coupled with ultra high performance liquid chromatography with tandem mass spectrometry was developed for simultaneous determination of ten neonicotinoid insecticides and metabolites in orange juice. An innovative aspect of this method was the utilization of the acidity of the juice for a self‐reaction between acidic components contained in the juice sample and added sodium carbonate which generated carbon dioxide bubbles in situ, accelerating the analytes transfer to the extractant of 1‐undecanol. The total acid content of juice sample was measured to produce the maximum amount of bubbles with minimum usage of carbonate. Manual shaking was subsequently adopted and was proven to enhance the extraction efficiency. The factors affecting the performance, including the type and the amount of the carbon dioxide source and extractant, and ionic strength were optimized. Compared with conventional methods, this approach exhibited low limits of detection (0.001–0.1 µg/L), good recoveries (86.2–103.6%), high enrichment factors (25–50), and negligible matrix effects (?12.3–13.7%). The proposed method was demonstrated to provide a rapid, practical, and environmentally friendly procedure due to no acid reagent, toxic solvent, or external energy requirement, giving rise to potential application on other high acid‐content matrices.  相似文献   

12.
In situ ionic‐liquid‐dispersive liquid–liquid microextraction was introduced for extracting Sudan dyes from different liquid samples followed by detection using ultrafast liquid chromatography. The extraction and metathesis reaction can be performed simultaneously, the extraction time was shortened notably and higher enrichment factors can be obtained compared with traditional dispersive liquid–liquid microextraction. When the extraction was coupled with ultrafast liquid chromatography, a green, convenient, cheap, and efficient method for the determination of Sudan dyes was developed. The effects of various experimental factors, including type of extraction solvent, amount of 1‐hexyl‐3‐methylimidazolium chloride, ratio of ammonium hexafluorophosphate to 1‐hexyl‐3‐methylimidazolium chloride, pH value, salt concentration in sample solution, extraction time and centrifugation time were investigated and optimized for the extraction of four kinds of Sudan dyes. The limits of detection for Sudan I, II, III, and IV were 0.324, 0.299, 0.390, and 0.655 ng/mL, respectively. Recoveries obtained by analyzing the seven spiked samples were between 65.95 and 112.82%. The consumption of organic solvent (120 μL acetonitrile per sample) was very low, so it could be considered as a green analytical method.  相似文献   

13.
The rapid screening of trace levels of short‐chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex‐assisted liquid–liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex‐assisted liquid–liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra‐ and inter‐day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex‐assisted liquid–liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short‐chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L.  相似文献   

14.
Plant hormone determination in food matrices has attracted more and more attention because of their potential risks to human health. However, analytical methods for the analysis of multiple plant hormones remain poorly investigated. In the present study, a convenient, selective, and ultrasensitive high‐performance liquid chromatography method for the simultaneous determination of multiple classes of plant hormones has been developed successfully using dispersive liquid–liquid microextraction followed by precolumn fluorescent labeling. Eight plant hormones in fruits including jasmonic acid, 12‐oxo‐phytodienoic acid, indole‐3‐acetic acid, 3‐indolybutyric acid, 3‐indolepropionic acid, gibberellin A3, 1‐naphthylacetic acid, and 2‐naphthaleneacetic acid were analyzed by this method. The conditions employed for dispersive liquid–liquid microextraction were optimized systematically. The linearity for all plant hormones was found to be >0.9993 (R2 values). This method offered low detection limits of 0.19–0.44 ng/mL (at a signal‐to‐noise ratio of 3), and method accuracies were in the range of 92.32–103.10%. The proposed method was applied to determine plant hormones in five kinds of food samples, and this method can achieve a short analysis time, low threshold levels of detection, and a high specificity for the analysis of targeted plant hormones present at trace level concentrations in complex matrices.  相似文献   

15.
A simple, sensitive, and inexpensive single drop liquid‐liquid‐liquid microextraction combined with isocratic RP‐HPLC and UV detection was developed for the determination of anti‐malaria drug, chloroquine. The target compound was extracted from alkaline aqueous sample solution (adjusted to 0.5 mol/L sodium hydroxide) through a thin layer of organic solvent membrane and back‐extracted to an acidic acceptor drop (adjusted to 0.02 mol/L phosphoric acid) suspended on the tip of a 25 μL HPLC syringe in the organic layer. This syringe was also used for direct injection after extraction. The linear range was 1–200 μg/L. The LOD and LOQ were 0.3 and 1.0 μg/L, respectively. Intra‐and inter‐day precisions were less than 2.0 and 2.3%, respectively. The real samples were successfully analyzed using the proposed method. The recoveries of spiked samples were more than 94.6%.  相似文献   

16.
In the present work, an efficient and environmental friendly method of ionic‐liquid‐based emulsified microextraction procedure accelerated by ultrasound radiation has been developed. Subsequently, its performance was compared with dispersive liquid–liquid microextraction and ultrasound‐assisted surfactant‐based emulsification microextraction methods. The optimization of experimental conditions was carried out by combination of central composite design and response surface methodology. The optimum conditions of variables were set as follows: 50 μL of 1‐hexyl‐3‐methylimidazolium hexafluorophosphate (extracting solvent), 10 min ultrasound time, and 10 min vortex time for agitating 6 mL sample solution in pH 3 in the presence of 4 mg sodium dodecyl sulfate without addition of salt and 200 μL of methanol as diluent solvent. Under these conditions, the responses are linear for doxepin and perphenazine in the range of 0.3–1000 and 5–1000 μg/L, respectively. The limits of detection were 0.1 μg/L for doxepin and 1 μg/L for perphenazine. Relative standard deviations were lower than 3.5 for the determination of both species. Finally, the method was used for the preconcentration and determination of doxepin and perphenazine in urine sample with relative recoveries in the range of 89–98%.  相似文献   

17.
Matrix solid‐phase dispersion combined with dispersive liquid–liquid microextraction has been developed as a new sample pretreatment method for the determination of four sulfonylurea herbicides (chlorsulfuron, bensulfuron‐methyl, chlorimuron‐ethyl, and pyrazosulfuron) in tea by high‐performance liquid chromatography with diode array detection. The extraction and cleanup by matrix solid‐phase dispersion was carried out by using CN‐silica as dispersant and carbon nanotubes as cleanup sorbent eluted with acidified dichloromethane. The eluent of matrix solid‐phase dispersion was evaporated and redissolved in 0.5 mL methanol, and used as the dispersive solvent of the following dispersive liquid–liquid microextraction procedure for further purification and enrichment of the target analytes before high‐performance liquid chromatography analysis. Under the optimum conditions, the method yielded a linear calibration curve in the concentration range from 5.0 to 10 000 ng/g for target analytes with a correlation coefficients (r2) ranging from 0.9959 to 0.9998. The limits of detection for the analytes were in the range of 1.31–2.81 ng/g. Recoveries of the four sulfonylurea herbicides at two fortification levels were between 72.8 and 110.6% with relative standard deviations lower than 6.95%. The method was successfully applied to the analysis of four sulfonylurea herbicides in several tea samples.  相似文献   

18.
A novel dispersive solid‐phase extraction combined with vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high‐performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean‐up of the extract was conducted by dispersive solid‐phase extraction using activated carbon as the sorbent. The vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1‐undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2–500 ng/g with correlation coefficients (r) of 0.9993–0.9999. The limits of detection were in the range of 0.08–0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices.  相似文献   

19.
A novel dispersive liquid‐phase microextraction method without dispersive solvents has been developed for the enrichment and sensitive determination of triclosan and triclocarban in environmental water samples prior to HPLC‐ESI‐MS/MS. This method used only green solvent 1‐hexyl‐3‐methylimidazolium hexafluorophosphate as extraction solvent and overcame the demerits of the use of toxic solvents and the instability of the suspending drop in single drop liquid‐phase microextraction. Important factors that may influence the enrichment efficiencies, such as volume of ionic liquid, pH of solutions, extraction time, centrifuging time and temperature, were systematically investigated and optimized. Under optimum conditions, linearity of the method was observed in the range of 0.1–20 μg/L for triclocarban and 0.5–100 μg/L for triclosan, respectively, with adequate correlation coefficients (R>0.9990). The proposed method has been found to have excellent detection sensitivity with LODs of 0.04 and 0.3 μg/L, and precisions of 4.7 and 6.0% (RSDs, n=5) for triclocarban and triclosan, respectively. This method has been successfully applied to analyze real water samples and satisfactory results were achieved.  相似文献   

20.
In this paper, solid‐phase extraction (SPE) in combination with dispersive liquid–liquid microextraction (DLLME) has been developed as a sample pretreatment method with high enrichment factors for the sensitive determination of amide herbicides in water samples. In SPE–DLLME, amide herbicides were adsorbed quantitatively from a large volume of aqueous samples (100 mL) onto a multiwalled carbon nanotube adsorbent (100 mg). After elution of the target compounds from the adsorbent with acetone, the DLLME technique was performed on the resulting solution. Finally, the analytes in the extraction solvent were determined by gas chromatography–mass spectrometry. Some important extraction parameters, such as flow rate of sample, breakthrough volume, sample pH, type and volume of the elution solvent, as well as salt addition, were studied and optimized in detail. Under optimum conditions, high enrichment factors ranging from 6593 to 7873 were achieved in less than 10 min. There was linearity over the range of 0.01–10 μg/L with relative standard deviations of 2.6–8.7%. The limits of detection ranged from 0.002 to 0.006 μg/L. The proposed method was used for the analysis of water samples, and satisfactory results were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号