首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A supported metal catalyst was designed, characterized, and tested for aqueous phase heterogeneous hydrogenation of vinyl acetate with parahydrogen to produce 13C‐hyperpolarized ethyl acetate for potential biomedical applications. The Rh/TiO2 catalyst with a metal loading of 23.2 wt % produced strongly hyperpolarized 13C‐enriched ethyl acetate‐1‐13C detected at 9.4 T. An approximately 14‐fold 13C signal enhancement was detected using circa 50 % parahydrogen gas without taking into account relaxation losses before and after polarization transfer by magnetic field cycling from nascent parahydrogen‐derived protons to 13C nuclei. This first observation of 13C PHIP‐hyperpolarized products over a supported metal catalyst in an aqueous medium opens up new possibilities for production of catalyst‐free aqueous solutions of nontoxic hyperpolarized contrast agents for a wide range of biomolecules amenable to the parahydrogen induced polarization by side arm hydrogenation (PHIP‐SAH) approach.  相似文献   

2.
Pseudo‐meta and pseudo‐para diamino‐octafluoro[2.2]paracyclophanes are challenging to separate either by chromatography or recrystallization, but through the use of a mixture of the two isomers, the 1H, 19F, and 13C NMR spectra of these compounds have been fully and unambiguously assigned using 1H COSY, 1H‐19F HOESY, 1H‐13C HSQC, 1H‐13C HMBC, and 19F‐13C HSQC techniques. This permits the easy identification of either of the individual isomers. In addition, the 13C spectrum of the pseudo‐ortho analogue is reported and assigned for the first time. The gem shift effect in this series of bridge‐fluorinated paracyclophanes serves to deshield 1H resonances and shield 13C. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
An efficient pulse sequence for measuring long‐range C? H coupling constants (JC? H) named selective J‐resolved HMBC has been developed by replacing a 1H 180° pulse with a selective 1H 180° pulse and the HMBC pulse scheme with the constant time (CT) HMBC employed in the J‐resolved HMBC pulse sequence that we reported previously. The novel pulse sequence providing only long‐range JC? H cross peaks for easy and accurate analysis enables to overcome disadvantages of the previous HMBC‐based pulse sequences (J‐resolved HMBC‐1) along with maintaining high sensitivity. The efficiency of measuring long‐range JC? H using the proposed pulse sequence has been demonstrated in applications to the complicated natural products, portmicin and monazomycin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Complete assignments of 1H‐ and 13C‐NMR resonances of five methyl tetra‐O‐benzoyl‐D‐pyranosides based on 1H, 13C, 2D DQF–COSY, HMQC, HMBC and HSQC–TOCSY experiments have been performed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
We present a pulse sequence for the simultaneous measurement of N? H and Cα? Hα couplings in double‐labeled proteins from 2D spectra. The proposed sequence, a modification of the HN(CO)CA experiment, combines the J‐modulation method and the IPAP scheme. The couplings can be readily retrieved from a series of 2D 15N? 1H correlation spectra, differing in the time point at which a 1H 180° pulse is applied. This induces an intensity modulation of the 15N? 1H correlation peaks with the Cα? Hα coupling. The Cα? Hα coupling is then obtained by fitting the observed intensities to the modulation equation. The N? H coupling is measured in each member of the set from peak‐to‐peak separations in the IPAP subspectra. The pulse sequence is experimentally verified with a sample of 15N/13C‐enriched ubiquitin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We have investigated the use of 13C for the detection of saturation transfer difference (STD) NMR spectra. By detecting the STD spectrum in the 13C channel it is possible to eliminate the residual water signal in the STD‐NMR spectrum. We have employed an INEPT transfer in order to shift the magnetization from the proton channel to 13C. As a sample system to check our method we have used human serum albumin and phenylalanine. We have shown that such a transfer can be accomplished and gives reasonable signal intensities. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
1H and 13 C NMR spectral data of 13 new compounds containing a 4‐(dimethylamino)‐ or 4‐(pyrrolidin‐1‐yl)pyridinium moiety linked to the N‐9 or N‐3 nitrogen atom of an adenine moiety were assigned. 1D and 2D NMR experiments (DEPT, HSQC and HMBC) allowed the unequivocal identification of N‐9 and N‐3 isomers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This article presents the effects of strong ionizing radiations on the physico‐chemical modifications of aliphatic or aromatic amine‐cured epoxy resins based on diglycidyl ether of bisphenol A (DGEBA). Such epoxy resins have a considerable number of applications in the nuclear industrial field and are known to be very stable under moderate irradiation conditions. Using extensively high resolution solid‐state 13C‐NMR spectroscopy we show that the aliphatic amine‐cured resin (DGEBA‐TETA) appears much more sensitive to gamma rays than the aromatic amine‐cured one (DGEBA‐DDM). On the one hand, qualitative analyses of the high resolution solid‐state 13C‐NMR spectra of both epoxy resins, irradiated under similar conditions (8.5 MGy), reveal almost no change in the aromatic amine‐cured resin whereas new resonances are observed for the aliphatic amine‐cured resin. These new peaks were interpreted as the formation of new functional groups such as amides, acids and/or esters and to alkene groups probably formed in the aliphatic amine skeleton. On the other hand, molecular dynamics of these polymers are investigated by measuring the relaxation times, TCH, T1ρH and T1C , before and after irradiation. The study of relaxation data shows the formation, under irradiation, of a more rigid network, especially for the aliphatic amine‐cured system and confirms that aromatic amine‐cured resin [DGEBA‐4,4′‐diaminodiphenylmethane(DDM)] is much less affected by ionizing radiations than the aliphatic amine‐cured resin [DGEBA‐triethylenetetramine(TETA)]. Moreover, it has been shown that the molecular modifications generated by irradiation on the powder of the aliphatic‐amine‐cured resin appear to be homogeneously distributed inside the polymers as no phase separations can be deduced from the above analyses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Recent advances in solid‐state nuclear magnetic resonance (NMR) techniques, such as magic angle spinning and high‐power decoupling, have dramatically increased the sensitivity and resolution of NMR. However, these NMR techniques generate extra heat, causing a temperature difference between the sample in the rotor and the variable temperature gas. This extra heating is a particularly crucial problem for hydrated lipid membrane samples. Thus, to develop an NMR thermometer that is suitable for hydrated lipid samples, thulium‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (TmDOTA) was synthesized and labeled with 13C (i.e., 13C‐TmDOTA) to increase the NMR sensitivity. The complex was mixed with a hydrated lipid membrane, and the system was subjected to solid‐state NMR and differential scanning calorimetric analyses. The physical properties of the lipid bilayer and the quality of the NMR spectra of the membrane were negligibly affected by the presence of 13C‐TmDOTA, and the 13C chemical shift of the complex exhibited a large‐temperature dependence. The results demonstrated that 13C‐TmDOTA could be successfully used as a thermometer to accurately monitor temperature changes induced by 1H decoupling pulses and/or by magic angle spinning and the temperature distribution of the sample inside the rotor. Thus, 13C‐TmDOTA was shown to be a versatile thermometer for hydrated lipid assemblies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A simple and robust solvent suppression technique that enables acquisition of high‐quality 1D 1H nuclear magnetic resonance (NMR) spectra of alcoholic beverages on cryoprobe instruments was developed and applied to acquire NMR spectra of Scotch Whisky. The method uses 3 channels to suppress signals of water and ethanol, including those of 13C satellites of ethanol. It is executed in automation allowing high throughput investigations of alcoholic beverages. On the basis of the well‐established 1D nuclear Overhauser spectroscopy (NOESY) solvent suppression technique, this method suppresses the solvent at the beginning of the pulse sequence, producing pure phase signals minimally affected by the relaxation. The developed solvent suppression procedure was integrated into several homocorrelated and heterocorrelated 2D NMR experiments, including 2D correlation spectroscopy (COSY), 2D total correlation spectroscopy (TOCSY), 2D band‐selective TOCSY, 2D J‐resolved spectroscopy, 2D 1H, 13C heteronuclear single‐quantum correlation spectroscopy (HSQC), 2D 1H, 13C HSQC‐TOCSY, and 2D 1H, 13C heteronuclear multiple‐bond correlation spectroscopy (HMBC). A 1D chemical‐shift‐selective TOCSY experiments was also modified. The wealth of information obtained by these experiments will assist in NMR structure elucidation of Scotch Whisky congeners and generally the composition of alcoholic beverages at the molecular level.  相似文献   

11.
New information has been obtained from very‐high‐resolution 13C NMR studies of a series of long‐chain n‐alkanes. These compounds are fundamentally important in the petroleum industry and are essential to the life of some plants, flowers, and insects. At least partial resolution of the ten different 13C NMR signals of n‐C20H42 is observed at 11.7 T for solutions in C6D6 or C6D5CD3. A 13C T1 inversion‐recovery experiment provides much more detailed information than in previous studies of long‐chain n‐alkanes, demonstrates a steady increase in the relaxation times of the ten different carbons proceeding from the middle to the end of the chain because of segmental motion, and thus confirms the assignments for the interior carbons. In contrast, there is significant overlap for the signals for C‐7 and the more interior carbons in a solution of n‐C16 or longer chain alkanes in CDCl3. Not only are the chemical shifts sensitive to the solvent used, but also the relative chemical shifts change. Signals for the interior carbons of the odd‐number alkanes in CDCl3 are better resolved than in the spectra of their even‐number counterparts. Some mixed aromatic solvent systems give increased dispersion of the cluster of C‐6 through C‐10 signals of n‐C20H42, n‐C21H44, and n‐C22H46. However, none of the solvents used could even partially resolve the C‐10 and C‐11 signals of n‐C21H44 or n‐C22H46 at 11.7 T, which may result from a different distribution of conformers for n‐C21H44 or n‐C22H46 than for n‐C20H42 and shorter n‐alkanes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A series of aryl‐substituted enaminoketones and their thio analogues in CDCl3 solution and in the solid state were studied by the use of high‐resolution 1H and 13C as well as 13C cross polarization magic angle spinning (CP MAS) NMR spectra in combination with gauge including atomic orbitals‐density functional theory (GIAO‐DFT) calculations performed at the B3PW91/6–311 + + G(d,p) level of theory using the B3PW91/6‐311 + + G(d,p)‐optimized geometries. The analysis of the 13C NMR spectra in solution was done by using the Incredible Natural Abundance DoublE QUAntum Transfer Experiment (INADEQUATE) technique, whereas trends observed in the 13C shielding constants, calculated for the compounds studied, were a great help in assigning most of the signals in the 13C CP MAS NMR spectra. It was established on the basis of the experimental and theoretical NMR data that both groups of compounds exist in the form of Z‐s‐Z‐s‐E isomers in CDCl3 solution as well as in the solid state, with the NH hydrogen atom involved in intramolecular hydrogen bonding. This conclusion is in agreement with the fact that some of the compounds studied reveal liquid‐crystalline properties. Three‐bond H, H and C, H coupling constants measured in solution played a crucial role in the structure elucidation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The 13 C NMR resonances of 19 1‐acyl‐3‐(2‐nitro‐5‐substitutedphenyl)‐4,5‐dihydro‐1H‐pyrazoles, and 19 1‐acyl‐3‐(2‐amino‐5‐substituted)‐4,5‐dihydro‐1H‐pyrazoles, were completely assigned using the concerted application of one‐ and two‐dimensional NMR experiments (DEPT, gs‐HSQC and gs‐HMBC). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
N‐acetyl‐4‐nitrotryptophan methyl ester (2), N‐acetyl‐5‐nitrotryptophan methyl ester (3), N‐acetyl‐6‐nitrotryptophan methyl ester (4) and N‐acetyl‐7‐nitrotryptophan methyl ester (5) were synthesized through a modified malonic ester reaction of the appropriate nitrogramine analogs followed by methylation with BF3‐methanol. Assignments of the 1H and 13C NMR chemical shifts were made using a combination of 1H–1H COSY, 1H–13C HETCOR and 1H–13C selective INEPT experiments. Copyright © 2008 Crown in the right of Canada. Published by John Wiley & Sons, Ltd  相似文献   

15.
A novel metabolomics approach for NMR‐based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of 13C‐satellite peaks using 1D‐1H‐NMR spectra. In comparison with 13C‐NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of 13C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high‐throughput of 1H‐NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D‐NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts.  相似文献   

16.
Site‐specific 13C isotope labeling is a useful approach that allows for the measurement of homonuclear 13C,13C coupling constants. For three site‐specifically labeled oligosaccharides, it is demonstrated that using the J‐HMBC experiment for measuring heteronuclear long‐range coupling constants is problematical for the carbons adjacent to the spin label. By incorporating either a selective inversion pulse or a constant‐time element in the pulse sequence, the interference from one‐bond 13C,13C scalar couplings is suppressed, allowing the coupling constants of interest to be measured without complications. Experimental spectra are compared with spectra of a nonlabeled compound as well as with simulated spectra. The work extends the use of the J‐HMBC experiments to site‐specifically labeled molecules, thereby increasing the number of coupling constants that can be obtained from a single preparation of a molecule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Chemical shift assignment of seven N‐substituted 6‐(4‐methoxyphenyl)‐7H‐pyrrolo[2, 3‐d]pyrimidin‐4‐amines, six of which are fluorinated, have been performed based on 1H, 13C, 19F, and 2D COSY, HMBC and HSQC experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A 3D 1H–13C–1H refocused INEPT transfer experiment is proposed in which the initial coherence transfer of 1H longitudinal to 13C transverse magnetization is tuned to the long‐range 1H, 13C couplings while the reverse INEPT component transfers the magnetization to the directly bonded 1H. Integration of a constant time 1H evolution period into the long‐range coherence transfer interval provides absorption mode signals for each dimension. A 13C purge component at the beginning of the sequence selects for 12C‐bound 1H magnetization that is then transferred to a 13C‐bound hydrogen, thus strongly suppressing the diagonal signals. This experiment is expected to be of particular value for situations in which resonance overlap in the 13C dimension renders 2D long‐range heteronuclear correlation data ambiguous. In combination with a diagonal‐suppressed 3D 1H–13C–1H TOCSY‐HSQC experiment, complete assignment of the ring resonances of the Lewis‐b hexasaccharide was obtained on a 4.2 mM sample using a conventional 500 MHz probe (0.1% ethylbenzene signal‐to‐noise ratio of 600), suggesting its applicability to sub‐millimolar samples using cryoprobe technology. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
A three‐dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in 15N/13C‐labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135–147]; t2 evolution is used to frequency label 13C′ rather than 15N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880–12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter‐residue correlation peaks (i.e. Hi, Ci?1), the spectrum also contains additional intra‐residue correlation peaks (i.e. Hi?1, Ci?1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide 1H chemical shifts (5–6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135–147] leads to a more robust assignment protocol for backbone resonances (1HN, 15N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727–14735]. Further, this new protocol enables assignment of 13C′ resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural—and functional—proteomics research by NMR. Performance of this experiment has been demonstrated using 13C/15N labeled ubiquitin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The γ‐glutamyl transpeptidase (GGT) enzyme plays a central role in glutathione homeostasis. Direct detection of GGT activity could provide critical information for the diagnosis of several pathologies. We propose a new molecular probe, γ‐Glu‐[1‐13C]Gly, for monitoring GGT activity in vivo by hyperpolarized (HP) 13C magnetic resonance (MR). The properties of γ‐Glu‐[1‐13C]Gly are suitable for in vivo HP 13C metabolic analysis since the chemical shift between γ‐Glu‐[1‐13C]Gly and its metabolic product, [1‐13C]Gly, is large (4.3 ppm) and the T1 of both compounds is relatively long (30 s and 45 s, respectively, in H2O at 9.4 T). We also demonstrate that γ‐Glu‐[1‐13C]Gly is highly sensitive to in vivo modulation of GGT activity induced by the inhibitor acivicin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号