首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A novel, facile, and efficient one‐step copolymerization strategy was developed for the preparation of β‐cyclodextrin (β‐CD) methacrylate monolithic columns using click chemistry. The novel mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD monomer was synthesized by a click reaction between propargyl methacrylate and mono‐6‐azido‐β‐CD, and then monolithic columns were prepared through a one‐step in situ copolymerization of the mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD monomer and ethylene dimethacrylate. The physicochemical properties and column performance of the fabricated monolithic columns were characterized by elemental analysis, SEM, and micro‐HPLC. Satisfactory column permeability, efficiency, and separation performance were obtained for the optimized poly(mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD‐co‐ethylene dimethacrylate) monolithic columns. Additionally, typical hydrophilic interaction chromatography retention behavior was observed on the monoliths at high acetonitrile content in the mobile phase. Although the enantioselectivity of our monolithic columns did not meet the level of other reported β‐CD monolithic columns, this one‐step strategy based on click chemistry still provides an interesting and effective model as it offers the possibility to easily prepare related novel CD methacrylate monoliths through a one‐step copolymerization strategy.  相似文献   

2.
A neutral naphthyl methacrylate‐based monolith (NMM) was introduced for RP‐CEC of various aromatic compounds via hydrophobic and π interactions. It was characterized over a wide range of elution conditions to gain insight into its RP retention mechanism toward the various solute probes under investigation. First, the NMM column exhibited cathodal EOF at various mobile phase compositions and pH suggesting that although the NMM column is void of fixed charges, it acquires a negative zeta potential. It is believed that the negative zeta potential is imparted by the adsorption of mobile phase ions to the NMM surface. The NMM column exhibited π–π interactions in addition to hydrophobic interactions due to the aromatic and nonpolar nature of its naphthyl ligands. In all cases, the retention of the various aromatic test solutes including PAHs, benzene derivatives, toluene derivatives, anilines and toluidine, tolunitrile and nitrotoluene positional isomers on the NMM column were compared to their retention on an octadecyl acrylate‐based monolithic column. Not only were the values of the retention factors of the various solutes on the NMM column higher than those obtained on the octadecyl acrylate‐based monolithic column under otherwise the same CEC conditions, but the elution orders were also different on both columns with a superior and unique selectivity exhibited by the NMM column.  相似文献   

3.
Lauryl methacrylate‐based (LMA) monolithic columns for CEC, prepared using either thermal initiation or by UV‐irradiation in the presence of AIBN have been compared. Thermal polymerization was carried out at 70°C for 20 h. For UV initiation, the effects of the time exposure to UV light and irradiation energy were investigated. For each initiation process, the influence of composition of porogenic solvent (1,4‐butanediol/1‐propanol ratio) on the physical and electrochromatographic properties of the resulting monoliths was also evaluated. Photochemically lauryl methacrylate stationary phases initiated showed higher permeabilities and better efficiencies than those prepared by thermal initiation. After optimization of polymerization mixture, photopolymerized columns provided a permeability of 4.25×10?13 m2 and a minimum plate height of 13.4 μm for a mixture of polycyclic aromatic hydrocarbons. Similar column‐to‐column and batch‐to‐batch reproducibilities, with RSD values below 11.6 and 11.0 % for the thermal‐ and UV‐initiated columns, respectively, were obtained.  相似文献   

4.
In recent years, the efficient analysis of biological samples has become more important due to the advances of life science and pharmaceutical research and practice. Because biological sample pretreatment is the bottleneck for fast process, material development for efficient sample process in the high‐performance liquid chromatography analysis is highly desirable. In this research, a cation‐exchange restricted access monolithic column was synthesized by a reversible addition‐fragmentation chain transfer polymerization method. Utilizing the controlled/living property of the reversible addition‐fragmentation chain transfer method, a monolithic column of cross‐linked poly(sulfopropyl methacrylate) was prepared first and then linear poly(glycerol mono‐methacrylate) was immobilized covalently on the surface of the polymer. The monolithic material has both functionalities of cation‐exchange and protein exclusion. Protein recovery of 94.6% was obtained after grafting of poly(glycerol mono‐methacrylate) while the cation‐exchange property of the column is still retained. In the study, the relation between the synthetic conditions and properties of the materials was studied. The synthesis conditions including the porogen, monomer concentration, and ratio of monomers/initiator/reversible addition‐fragmentation chain transfer agent were optimized. The study provided a method for the preparation of restricted access monolithic columns: a bifunctional material by reversible addition‐fragmentation chain transfer polymerization method.  相似文献   

5.
A novel (3‐sulfopropyl methacrylate potassium)‐silica hybrid monolithic column for CEC has been prepared by a simple one‐pot approach based on efficient thiol‐ene click chemistry. In this process, the polycondensation of hydrolyzed alkoxysilanes and in situ click reaction of vinyl groups on 3‐sulfopropyl methacrylate potassium and thiol groups on the precondensed siloxanes simultaneously occurred in a pretreated capillary. Homogeneous monolithic matrix with large through‐pores tightly bonded to the inner wall of the capillary was shown by optical microscope and SEM. The minimum plate height of this hybrid monolithic column was determined as 3.9 μm for thiourea. Anilines, alkylbenzenes, and phenols were well separated on this hybrid monolithic column by CEC, which indicated typical reversed‐phase and cation‐exchange chromatographic retention mechanisms of the column.  相似文献   

6.
A new aromatic, tetrafunctional methacrylate monomer, 4,4′‐di(2‐hydroxy‐3‐methacryloyloxypropoxy)benzophenone, and its application to the synthesis of porous microspheres are presented. This new monomer was copolymerized with divinylbenzene in the presence of pore‐forming diluents. The properties of the obtained highly crosslinked microspheres were investigated as column packing for high‐performance liquid chromatography. Their porous structures in both dry and wet states were studied and compared with those of poly(divinylbenzene) and the less crosslinked copolymer of 2,3‐epoxypropyl methacrylate and divinylbenzene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7014–7026, 2006  相似文献   

7.
Hydrophilic interaction liquid chromatography is a separation technique suitable for the separation of moderately and highly polar compounds. Various stationary phases (SPs) for hydrophilic interaction liquid chromatography are commercially available. While the SPs based on the same type of ligand are available from different providers, they can display a distinct retention characteristics and separation selectivity. The current work is focused on characterization and comparison of the separation systems of two amide‐based HPLC columns from two producers, i.e. XBridge Amide column and TSK gel Amide‐80 column. Several characterization procedures (tests) were used to investigate the differences between these columns. The chromatographic behavior of selected analytes indicates that multimodal interactions are responsible for retention and separation on these columns. Multiple testing approaches were used in order to reveal subtle differences between the SPs. Both amide‐based columns showed certain differences in retention, selectivity, and plate counts. Based on the tests used in this study, we conclude that the investigated columns provide a different degree of H‐bonding interactions.  相似文献   

8.
In this work, we developed a capillary column modified with zeolitic imidazolate framework‐8 as a novel stationary phase for open‐tubular capillary electrochromatography. To immobilize zeolitic imidazolate framework‐8 onto the inner surface of silica capillary, a bio‐inspired polydopamine functionalization was used to functionalize the capillary surface with polydopamine. First, a polydopamine layer was assembled inside the capillary. Second, due to noncovalent adsorption and covalent reaction ability, polydopamine could attract and anchor zeolitic imidazolate framework‐8 onto the inner surface of capillary. It has been demonstrated that zeolitic imidazolate framework‐8 was successfully grafted on the inner wall of the capillary by scanning electron microscopy, and Fourier transform infrared spectroscopy. The electro‐osmotic flow characteristics of capillaries were also investigated by varying the pH value and acetonitrile content of mobile phase. The zeolitic imidazolate framework‐8 coating not only increased the phase ratio of open‐tubular column, but also improved the interactions between tested analytes and the stationary phase. Three groups of isomers including acidic, basic, and neutral compounds were well separated on the zeolitic imidazolate framework‐8 bonded column, with theoretic plate numbers up to 1.9 × 105 N for catechol. The repeatability of the prepared columns was also studied, and the relative standard deviations for intra‐ and interday runs were less than 5%.  相似文献   

9.
A series of well‐defined, fluorinated diblock copolymers, poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,2‐trifluoroethyl methacrylate) (PDMA‐b‐PTFMA), poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate) (PDMA‐b‐PHFMA), and poly[2‐(dimethylamino)ethyl methacrylate]‐b‐poly(2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate) (PDMA‐b‐POFMA), have been synthesized successfully via oxyanion‐initiated polymerization. Potassium benzyl alcoholate (BzO?K+) was used to initiate DMA monomer to yield the first block PDMA. If not quenched, the first living chain could be subsequently used to initiate a feed F‐monomer (such as TFMA, HFMA, or OFMA) to produce diblock copolymers containing different poly(fluoroalkyl methacrylate) moieties. The composition and chemical structure of these fluorinated copolymers were confirmed by 1H NMR, 19F NMR spectroscopy, and gel permeation chromatography (GPC) techniques. The solution behaviors of these copolymers containing (tri‐, hexa‐, or octa‐ F‐atom)FMA were investigated by the measurements of surface tension, dynamic light scattering (DLS), and UV spectrophotometer. The results indicate that these fluorinated copolymers possess relatively high surface activity, especially at neutral media. Moreover, the DLS and UV measurements showed that these fluorinated diblock copolymers possess distinct pH/temperature‐responsive properties, depending not only on the PDMA segment but also on the fluoroalkyl structure of the FMA units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2702–2712, 2009  相似文献   

10.
Lauryl methacrylate (LMA)‐ester based monolithic columns photo‐polymerized using lauroyl peroxide (LPO) as initiator were prepared, and their morphological and CEC properties were studied. The composition of the polymerization mixture (i.e. ratios of monomers/porogenic solvents, 1,4‐butanediol/1‐propanol and LMA/crosslinker) was optimized. The morphological and chromatographic properties of LMA columns were evaluated by means of SEM pictures and van Deemter plots of PAHs, respectively. The polymerization mixture selected as optimal provided a fast separation of a mixture of PAHs with excellent efficiencies (minimum plate heights of 8.9–11.1 μm). Satisfactory column‐to‐column (RSD<4.5%) and batch‐to‐batch reproducibilities (RSD<6.3%) were achieved. The LMA columns photo‐polymerized with LPO were compared with those prepared with AIBN. Using PAHs, alkylbenzenes and basic compounds for testing, the columns obtained with LPO gave the best compromise between efficiency, resolution and analysis time.  相似文献   

11.
A rapid micro‐analytical multiresidue method was developed for analysis of pyrethroids (kadethrin K, cypermethrin C and permethrin P) in soil micro‐sample (200 mg). It uses on‐line flow‐through extraction of soil micro‐samples (packed into a short glass column) with a methanol‐aqueous citric acid buffer mixture, successive on‐line SPE preconcentration of analytes from the extract and on‐line RP‐HPLC analysis with UV photometric detection. The separation of pyrethroids is performed on a Purospher RP‐18e column with methanol/water as mobile phase. Effects of sorbent placed at the bottom of a short column holding the soil sample and different kinds of on‐line SPE columns were tested. Besides, the influence of volume of the effluent on the pyrethroids recovery was also studied. Calibration curves were linear over the range assayed from 0.01 to 0.2 μg/mL with correlation coefficients of linear regression (least‐squares method) in the range 0.998–0.999. Recovery studies were carried out at 0.25–1.00 μg/g dry soil fortification level and obtained recoveries were for K 81–84%, C 56–59% and for P 58–63%. Achieved LOD (confidence band) of studied pyrethroids were for large‐volume injection (1 mL) 4.5 ng K, 3.7 ng C, 3.6 ng P or 27 ng/g K, 32 ng/g C and 29 ng/g P in dry soil “solid sampling HPLC”.  相似文献   

12.
Metal‐organic frameworks consisting of amino‐modified MIL‐101(M: Cr, Al, and Fe) crystals have been synthesized and subsequently incorporated to glycidyl methacrylate monoliths to develop novel stationary phases for nano‐liquid chromatography. Two incorporation approaches of these materials in monoliths were explored. The metal‐organic framework materials were firstly attached to the pore surface through reaction of epoxy groups present in the parent glycidyl methacrylate‐based monolith. Alternatively, NH2‐MIL‐101(M) were admixed in the polymerization mixture. Using short time UV‐initiated polymerization, monolithic beds with homogenously dispersed metal‐organic frameworks were obtained. The chromatographic performance of embedded UV‐initiated composites was demonstrated with separations of polycyclic aromatic hydrocarbons and non‐steroidal anti‐inflammatory drugs as test solutes. In particular, the incorporation of the NH2‐MIL‐101(Al) into the organic polymer monoliths led to an increase in the retention of all the analytes compared to the parent monolith. The hybrid monolithic columns also exhibited satisfactory run‐to‐run and column‐to‐column reproducibility.  相似文献   

13.
A novel open‐tubular CEC column coated with chitosan‐graft‐(β‐CD) (CDCS) was prepared using sol‐gel technique. In the sol‐gel approach, owing to the 3D network of sol‐gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55 000~163 000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol‐gel‐derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol‐gel‐coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS‐bonded capillary column.  相似文献   

14.
Monolithic columns were synthesized inside 1.02 mm internal diameter fused‐silica lined stainless‐steel tubing. Styrene and butyl, hexyl, lauryl, and glycidyl methacrylates were the functional monomers. Ethylene glycol dimethacrylate and divinylbenzene were the crosslinkers. The glycidyl methacrylate polymer was modified with gold nanoparticles and dodecanethiol (C12). The separation of alkylbenzenes was investigated by isocratic elution in 60:40 v/v acetonitrile/water. The columns based on polystyrene‐co‐divinylbenzene and poly(glycidyl methacrylate)‐co‐ethylene glycol dimethacrylate modified with dodecanethiol did not provide any separation of alkyl benzenes. The poly(hexyl methacrylate)‐co‐ethylene glycol dimethacrylate and poly(lauryl methacrylate)‐co‐ethylene glycol dimethacrylate columns separated the alkyl benzenes with plate heights between 30 and 60 μm (50 μL min?1 and 60°C). Similar efficiency was achieved in the poly(butyl methacrylate)‐co‐ethylene glycol dimethacrylate column, but only at 10 μL min?1 (0.22 mm s?1). Backpressures varied from 0.38 MPa in the hexyl methacrylate to 13.4 MPa in lauryl methacrylate columns (50 μL min?1 and 60°C). Separation of proteins was achieved in all columns with different efficiencies. At 100 μL min?1 and 60°C, the lauryl methacrylate columns provided the best separation, but their low permeability prevented high flow rates. Flow rates up to 500 μL min?1 were possible in the styrene, butyl and hexyl methacrylate columns.  相似文献   

15.
A method for the determination of sterols in vegetable oils by CEC with UV–Vis detection, using methacrylate ester‐based monolithic columns, has been developed. To prepare the columns, polymerization mixtures containing monomers of different hydrophobicities were tried. The influence of composition of polymerization mixture was optimized in terms of porogenic solvent, monomers/porogens and monomer/crosslinker ratios. The composition of the mobile phase was also studied. The optimum monolith was obtained with lauryl methacrylate monomer at 60:40% (wt:wt) lauryl methacrylate/ethylene dimethacrylate ratio and 60 wt% porogens with 20 wt% of 1,4‐butanediol (12 wt% 1,4‐butanediol in the polymerization mixture). Excellent resolution between sterols was achieved in less than 7 min with an 85:10:5 v/v/v ACN–2‐propanol–water buffer containing 5 mM Tris at pH 8.0. The limits of detection were lower than 0.04 mM, and inter‐day and column‐to‐column reproducibilities at 0.75 mM were better than 6.2%. The method was applied to the determination of sterols in vegetable oils with different botanical origins and to detect olive oil adulteration with sunflower and soybean oils.  相似文献   

16.
This study describes the evolution and growth of structured polymers by oblique angle deposition of poly(p‐xylylene) (PPX) derivatives. The deposition of structured PPX polymers have been demonstrated recently, but the mechanism of growth has not been studied. Here, we provide experimental evidence for the growth of structured PPX polymers by an atomic force microscope, electron microscope, and a profilometer. Individual columns expand with respect to their heights according to a power‐law, d = chp, where d is the column diameter, c and p are constants, and h is the height of a column. Values of p for structured poly(chloro‐p‐xylylene), poly(trifloroacetly‐p‐xylylene‐cop‐xylylene), and poly(bromo‐p‐xylylene) films are estimated as 0.11 ± 0.01, 0.15 ± 0.01, and 0.18 ± 0.01, respectively. This result is different from the traditional oblique angle deposition processes of nonpolymeric materials where the surface diffusion is low. Further analysis with two‐dimensional power spectral density (PSD) method showed that the ordering of columns is quasi‐periodic. Additionally, the X‐ray and transmission electron microscope characterization of the columns revealed that the columns are semicrystalline. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 640–648, 2008  相似文献   

17.
In this paper, poly(methyl methacrylate‐co‐sodium sulfopropyl lauryl maleate‐co‐2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxylpropoxy) benzophenone)/TiO2 (i.e., poly(MMA‐co‐M12‐co‐BPMA)/TiO2) composite particles were prepared by ultrasonically initiated emulsion polymerization. To study the dispersion and UV‐stability of the composite particles, laser diffraction particle size analyzer (LDPSA), ultraviolet‐visible absorption spectroscopy (UV‐vis), UV‐vis diffuse reflectance spectroscopy (DRS), differential scanning calorimeter (DSC), and the weight loss measurement were used. The results indicate that the dispersion of the poly(MMA‐co‐M12‐co‐BPMA)/TiO2 composite particles prepared by ultrasonically initiated emulsion polymerization is good. And the composite particles can absorb UV light; the ultraviolet absorption strength of poly(MMA‐co‐M12‐co‐BPMA) grafted onto the surface of TiO2 has not changed after UV irradiation while that of PMMA changed significantly. The UV absorption strength, weight loss, and Tg changes are in the order PMMA> poly(MMA‐co‐M12‐co‐BPMA) >PMMA grafted onto TiO2> poly(MMA‐co‐M12‐co‐BPMA) grafted onto TiO2. These results show that the ultrasonically initiated emulsion polymerization will enhance the UV stability of composite particles, and the UV‐stability of PMMA can be enhanced by the introduction of the organic UV‐stabilizer BPMA and the inorganic UV‐stabilizer titanium dioxide into the PMMA chains by covalent bond, and the effect of the BPMA and the TiO2 used together is better than that used, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A polar polymethacrylate‐based monolithic column was introduced and evaluated as a hydrophilic interaction CEC stationary phase. The monolithic stationary phase was prepared by in situ copolymerization of a neutral monomer 2‐hydroxyethyl methacrylate and a polar cross‐linker N,N′‐methylene bisacrylamide in a binary porogenic solvent consisting of dodecyl alcohol and toluene. The hydroxyl and amino groups at the surface of the monolithic stationary phase provided polar sites which were responsible for hydrophilic interactions. The composition and proportion of the polymerization mixture was investigated in detail. The mechanical stability and reproducibility of the obtained monolithic column preformed was satisfied. The effects of pH and organic solvent content on the EOF and the separation of amines, nucleosides, and narcotics on the optimized monolithic column were investigated. A typical hydrophilic interaction CEC was observed on the neutral polar stationary phase. The optimized monolithic column can obtain high‐column efficiencies with 62 000–126 000 theoretical plates/m and the RSDs of column‐to‐column (n = 9), run‐to‐run (n = 5), and day‐to‐day (n = 3) reproducibility were less than 6.3%. The calibration curves of these five narcotics exhibited good linearity with R in the range of 0.9959–0.9970 and linear ranges of 1.0–200.0 μg/mL. The detection limits at S/N = 3 were between 0.2 and 1.2 μg/mL. The recoveries of the separation of narcotics on the column were in the range of 84.0–108.6%. The good mechanical stability, reproducibility, and quantitation capacity was suitable for pressure‐assisted CEC applications.  相似文献   

19.
Herein, we report the fabrication of glycidyl methacrylate (GMA) polymeric conjugates of shortened multi‐walled carbon nanotubes (sMWCNT). The synthesis method involves the attachment of initiator on the surface of nanotubes followed by surface initiated atom transfer radical polymerization (SI‐ATRP) of GMA from the initiator‐bound sMWCNT surface. This is achieved by the procedure consisting of three important steps: introduction of amino groups onto the sMWCNT and attachment of polymerization initiator, 2‐bromo‐2‐methylpropinonyl bromide, and polymerization of GMA. The structure and properties of the resultant polymeric conjugates were characterized by Fourier transform infrared (FT‐IR) spectroscopy, Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X‐ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM) and SEM. The FT‐IR analysis of polymeric conjugates shows infrared (IR) peaks characteristic of GMA. AFM, TEM and SEM images clearly show the formation of poly(glycidyl methacrylate)(PGMA) polymer on sMWCNT surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Polymer/silica organic/inorganic composite nanoparticles bearing carboxyl groups on the surface were prepared via the emulsifier‐free emulsion copolymerization of methyl methacrylate and sodium methacrylate (NaMA). Carboxyl groups were generated by the addition of hydrochloric acid at the end of the copolymerization. Two methods of NaMA addition were studied: batch and two‐stage procedures. The batch procedure allowed only a limited number of carboxyl groups to effectively bond to the composite nanoparticles. In contrast, the number of carboxyl groups could be altered over a wide range with the two‐stage procedure. Fourier transform infrared spectroscopy and chemical titration were independently used to quantify the number of carboxyl groups, giving values close to each other and to the feed. A kinetic study indicated that the copolymerization followed a mechanism different than that found earlier. The average size of the composite nanoparticles was approximately 40 nm, as measured by both transmission electron microscopy (TEM) and laser scattering, and their polydispersity index was close to 1, indicating a fairly narrow size distribution. TEM photographs of the composite nanoparticles showed a multilayered core–shell structure with one silica bead as the core and with poly(methacrylate acid) as the outmost shell. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2826–2835, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号